

AN INTRUSION DETECTION SYSTEM FOR SDN-BASED TACTICAL

NETWORKS: A MACHINE LEARNING APPROACH

by

Skhumbuzo Goodwill Zwane

(201144122)

A dissertation submitted in fulfilment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science and Agriculture

Department of Computer Science

University of Zululand

KwaDlangezwa

RSA

Supervisor: Paul Tarwireyi

Co-supervisor: Prof Matthew Adigun

2020

ii

Abstract

Network security is increasingly becoming a critical and continuous issue due to ongoing

advancements in Information and Communication Technologies (ICT) and the concomitant

rise in the number of security threats. This is especially true for military communication

networks as security breaches may have detrimental effects. However, over the years, it has

become increasingly difficult to attain high levels of detection accuracy in military tactical

networks with conventional anomaly detection systems due to the dynamic nature of network

traffic in the battlefield, special operations, and the harsh environment where they operate.

Intrusion detection systems (IDS) have emerged as essential countermeasures to preserve

network security. In addition, the introduction of software-defined networks (SDN) in tactical

networks presents countless opportunities for security.

This study developed an IDS model for military tactical networks that utilizes Machine

Learning (ML) techniques for high detection rates and SDN for network global view and

centralised data collection. Following the Design Science methodology, the model was

designed based on guidelines from related literature, and a proof-of-concept prototype of the

model was implemented to assess its effectiveness. The experimental results indicated that

Machine Learning using network flow data collected via SDN can improve intrusion detection

rates in tactical networks. Among the machine learning techniques, ensemble learning methods

utilising Decision Tree classification methods, namely Random Forest and Adaptive Boosting,

obtained high recall and precision when detecting DDoS attacks, malicious, and misbehaving

nodes in an SDN-enabled tactical network.

iii

Declaration

I, Mr. Skhumbuzo Goodwill Zwane, hereby declare that the work presented in this dissertation

is my own work and that this dissertation has not previously been submitted in full or partial

fulfilment of requirements for an equivalent or higher qualification at any other recognised

educational institution. All sources of information used in this work have been acknowledged.

iv

Dedication

This dissertation is dedicated to my late parents

v

Acknowledgements

Primarily, I would like to thank God for being able to complete this research with

success. Then, I would like to express my special thanks to my supervisors Mr. Paul Tarwireyi

and Prof. Matthew. O. Adigun whose valuable guidance has helped me patch together this

research and prove it successful. Their suggestions and instructions have served as the major

contributor towards the completion of the research.

Then, I would like to thank my family and friends who have assisted me with their

support and valuable advice which was very helpful in various phases of this work’s journey.

Last but not least, I would like to extend my thanks to the staff and colleagues at the

University, not in any order of importance, namely Dr. O. Oki, N. Sibeko, Dr. P. Mudali, S.

Ndlovu, I. Adebayo, T. Akinola, and I. Mba for their various contributions and ideas which

aided me in completing this study.

vi

Table of Contents

Abstract .. ii

Declaration ... iii

Dedication ... iv

Acknowledgements .. v

List of Figures ... ix

List of Tables ... xii

List of Abbreviations .. xiv

List of publications .. xvii

Chapter 1: Introduction .. 1

1.1. Introduction ... 1

1.2. Motivation ... 5

1.3. Problem Statement .. 6

1.4. Research Questions ... 7

1.5. Goal and Objectives .. 8

1.5.1. Research Goal .. 8

1.5.2. Research Objectives ... 8

1.6. Research Methodology .. 8

1.6.1. Problem Analysis ... 9

1.6.2. Establishment of state-of-the-art .. 9

1.6.3. Solution Design .. 9

1.6.4. Solution Evaluation .. 10

1.7. Research Contributions ... 10

1.8. Organization of the Dissertation ... 11

Chapter 2: Background and Literature Review ... 13

2.1. Tactical Networks Security Challenges and Implications... 13

2.2. Categorisation of NIDS Techniques ... 18

2.3. State-of-the-art NIDS Techniques ... 23

2.3.1. Machine Learning-based IDS Approach ... 24

2.3.2. Software-Defined Network-based NIDS ... 27

2.4. Summary ... 31

Chapter 3: Research Design and Methodology ... 32

3.1. Research Methods Overview .. 33

vii

3.2. Method Selection... 35

3.2.1. Experimental Method... 35

3.2.2. Design Science Method ... 35

3.2.3. Data Science Method ... 36

3.2.4. Evaluation Metrics ... 39

3.3. Summary ... 40

Chapter 4: Performance Evaluation of ML Techniques for ID ... 41

4.1 Evaluation Datasets ... 41

4.1.1. UNSW-NB15 Dataset (Moustafa, Slay and Technology, 2015) 43

4.1.2. CIDDS-001 Dataset (M Ring et al., 2017) .. 43

4.2. ML Techniques Performance Evaluation .. 44

4.2.1. ML Classifiers in Packet-based dataset ... 44

4.2.2. Results .. 45

4.2.3. ML Classifiers in Flow-based dataset .. 47

4.2.4. Results .. 48

4.3. Result Analysis .. 53

4.4. Concluding Remarks ... 56

Chapter 5: Software-Defined Flow-based Intrusion Detection System (SFIDS) 57

5.1. Design Criteria .. 57

5.2. SFIDS Model Architecture ... 59

5.2.1. Packet Observation .. 60

5.2.2. Flow Metering and Export ... 60

5.2.3. Data Collection and Preparation .. 61

5.2.4. Data Analysis ... 61

5.3. Integration with SDN architecture .. 64

5.3.1. Data Plane .. 65

5.3.2. Control Plane ... 65

5.3.3. Application Plane ... 65

5.4. Overall SFIDS Overview .. 67

5.4.1. Overall System Functionalities .. 67

5.4.2. Unified Modelling Language (UML) .. 71

5.5. Summary ... 74

Chapter 6: SFIDS Implementation... 75

viii

6.1. Environment Setup and Tools ... 75

6.1.1. Mininet-Wifi .. 75

6.1.2. Network topology .. 76

6.1.3. OpenFlow Controller ... 76

6.1.4. Flow Sampling ... 77

6.2. Simulation and Data Collection .. 78

6.2.1. Network Simulation ... 79

6.2.2. Data Collection Scenarios .. 83

6.2.3. Traffic Generation .. 86

6.2.4. Flow Sampling in SDN .. 88

6.2.5. Data Preparation and Labelling ... 90

6.3. Dataset Exploration and Visualisation .. 94

6.4. Summary ... 97

Chapter 7: Results and Discussions ... 98

7.1. SFIDS Review ... 98

7.2. ML Models Architecture and Parameters ... 99

7.2.1. Adaptive Boosting ... 100

7.2.2. Random Forest ... 101

7.3. Performance Evaluation .. 103

7.3.1. TCP flood attack detection... 103

7.3.2. ICMP flooding attack detection ... 107

7.3.3. DDoS attack detection ... 111

7.4. Discussion and Analysis.. 115

Chapter 8: Conclusion and Future Work ... 117

8.1. Problem Summary ... 117

8.2. Research Questions ... 117

8.3. Conclusion ... 120

8.4. Recommendation for Future Research .. 120

8.5. Limitations .. 120

References .. 122

ix

List of Figures

Figure 1.1 Constraints of the military tactical environment (Burbank et al., 2006) 2

Figure 1.2 Overview of the research methodology .. 9

Figure 2.1 Unmanned vehicle to protect the battlefield (Madhu and Sreekumar, 2014) 14

Figure 2.2 Taxonomy of flow-based intrusion detection techniques (Fahad, Sher and Bi,

2017) .. 20

Figure 2.3 Taxonomy of UAV-IDSs (Choudhary et al., 2018) ... 22

Figure 2.4 Resource management framework with SDN control (Ji Qing et al., 2015) 28

Figure 3.1. Information System Research Framework (Hevner et al., 2004) 34

Figure 3.2. Application of Design science guidelines and research processes………………35

Figure 3.3 Data Science work cycle (Zumel and Mount, 2014)……………………………..36

Figure 4.1 Base method accuracy .. 50

Figure 4.2 Bagging DT, NB, and SVC accuracy ... 50

Figure 4.3 Adaboost (DT), (NB), (SVC) accuracy .. 51

Figure 4.4 Ensemble learning techniques ROC Curve Plot ... 52

Figure 4.5 Zoomed image of Figure 4.4 .. 52

Figure 4.6 Classifier build and test time .. 53

Figure 4.7 Packet and flow-based machine learning classifier performance 54

Figure 4.8 Model build time for packet and flow-based data .. 55

Figure 4.9 Model test time in packet and flow-based data .. 55

Figure 5.1 Proposed Software defined Flow-based Intrusion Detection System (Zwane,

Tarwireyi and Adigun, 2019a) ... 60

Figure 5.2. Generalized procedure for creating an Ensemble or a Meta- Model 62

Figure 5.3 SFIDS using ensemble learning method .. 64

Figure 5.4 SFIDS and SDN (Zwane, Tarwireyi and Adigun, 2019a) 65

Figure 5.5 Proposed deployment architecture(Zwane, Tarwireyi and Adigun, 2019c)........... 66

Figure 6.1 Tactical MANET topology ... 76

Figure 6.2 sFlow agent and Collector (Visible and Packard, 2003) .. 78

Figure 6.3 Implementation of FIDS model utilising SDN architecture 79

Figure 6.4 Starting Floodlight Contoller in terminal ... 80

Figure 6.5 Simulation of SDN based tactical MANET in mininet-wifi 81

Figure 6.6 Wireless SDN topology with three APs and eight stations 81

x

Figure 6.7 Floodlight GUI with 3 Access points and 8 Stations connected 82

Figure 6.8 Network nodes or mininet wifi node instances (Containers) 82

Figure 6.9 TCP flood attack scenario .. 84

Figure 6.10 ICMP flood attack scenario .. 85

Figure 6.11 DDoS attack scenario ... 85

Figure 6.12 Normal traffic generator using station 1 ... 87

Figure 6.13 node (Station 1) generating DDoS traffic to target station with IP address 10.0.0.8

.. 88

Figure 6.14 Starting sflow tool for flow stat collection in terminal... 89

Figure 6.15 sflow-rt running in the browser .. 90

Figure 6.16 Flow data sampled from SDN network .. 91

Figure 6.17 Distribution of Normal and Malicious network flow from SDN 92

Figure 6.18 Prepared data, after employing FeatureHashing, PCA, and scaling..................... 94

Figure 6.19 Scenario1 dataset feature importance ... 95

Figure 6.20 Scanario 1 correlation heatmap of features .. 96

Figure 6.21 Distribution of source port by class type for scenario1 dataset 97

Figure 7.1 SFIDS model for tactical networks .. 99

Figure 7.2 Real and Discrete AdaBoost error rate per number of estimators………………100

Figure 7.3 Random Forest OOB error………………………………………………………102

Figure 7.4 AdaBoost Confusion Matrix…………………………………………………….104

Figure 7.5 Random Forest Confusion Matrix………………………………………………104

Figure 7.6 Comparison of precision values in TCP flood detection………………………..105

Figure 7.7 AdaBoost and Random Forest Recall results for TCP flood attack……………..106

Figure 7.8 AdaBoost and Random Forest F1-score for TCP flood detection………………106

Figure 7.9 AdaBoost and Random Forest ROC curves…………………………………….107

Figure 7.10 AdaBoost Confusion Matrix…………………………………………………...108

Figure 7.11 Random Forest Confusion Matrix .. 108

Figure 7.12 AdaBoost and Random Forest precision in ICMP flood detection 109

Figure 7.13 AdaBoost and Random Forest recall in ICMP flood detection 110

Figure 7.14 AdaBoost and Random Forest f1-score in ICMP flood detection 110

Figure 7.15 ROC curve for AdaBoost and Random Forest in ICMP flood detection 111

Figure 7.16 AdaBoost Confusion Matrix... 112

Figure 7.17 Random Forest Confusison Matric ... 112

xi

Figure 7.18 AdaBoost and Random Forest precision in DDoS attack detection 113

Figure 7.19 AdaBoost and Random Forest recall in DDoS attack detection......................... 113

Figure 7.20 AdaBoost and Random Forest f1-score in DDoS attack detection 114

Figure 7.21 AdaBoost and Random Forest ROC AUC for DDoS attack detection 114

xii

List of Tables

Table 2.1. IDS technique advantages and disadvantages .. 21

Table 4.1. UNSW-BN15 network dataset distribution .. 43

Table 4.2 Overview of attacks within the CIDDS-001 Dataset (Markus Ring et al., 2017)…44

Table 4.3. Classifier TPR, FPR, AUC ... 45

Table 4.4 Classifier Build and Test time in seconds .. 46

Table 4.5 CIDDS-001 network intrusion datasets attributes…………………………………48

Table 4.6. Evaluation results for ensemble learning techniques .. 49

Table 6.1: Extracted Attributes .. 90

Table 6.2 Data Distribution for three scenario... 91

Table 6.3: FeatureHashing dimensionalities applied to each of the categorical features 93

Table 7.1 AdaBoost configuration parameters .. 101

Table 7.2 Random Forest configuration parameters .. 102

Table 7.3 Scenario 1 dataset configuration .. 103

Table 7.4 AdaBoost results for scenario 1 ... 104

Table 7.5 Random Forest results for scenario 1 .. 105

Table 7.6 Scenario 2 dataset configuration .. 107

Table 7.7 AdaBoost results for ICMP flood detection .. 109

Table 7.8 Random Forest results for ICMP flood detection .. 109

Table 7.9 Scenario 3 dataset configuration .. 111

Table 7.10 AdaBoost result in DDoS attack detection .. 112

Table 7.11 Random Forest result in DDoS attack detection .. 112

Table 7.12 AUC score before and after parameter tuning ... 115

Table 7.13 Comparison of ML using data sets and Implementation 116

xiii

xiv

List of Abbreviations

Abbreviation Stands For

AAC Authentication and Access Control

AdaBoost Adaptive Boosting

AI Artificial Intelligence

ANN Artificial Neural Networks

AP Access Point

API Application Programming Interface

ACCS Australian Centre for Cyber Security

AUC Area Under the Roc Curve

Bagging Bootstrap Aggregation

CART Classification and Regression Tree

CIA Confidentiality, Integrity, and Availability

CLL Conditional Log-Likelihood

COMSEC Communication Security

CP Control Plane

CPU Central Processing Unit

CS Computer Science

DARPA Defense Advanced Research Project Agency

DDoS Distributed Denial-of-Service

DE Decision Engine

DL Deep Learning

DM Data Mining

DoD Department of Defence

DoS Denial-of-Service

DP Data Plane

DS Design Science

DT Decision Tree

ELK Elasticsearch, Logstash, and Kibana

ELM Extreme Learning Machine

FIDS Flow-based Intrusion Detection System

xv

FPR False-Positive Rate

FTP File Transfer Protocol

ICMP Internet Control Message Protocol

ID Intrusion Detection

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

IS Information System

ISR Intelligence, Surveillance, and Reconnaissance

ISTAR Intelligence, Surveillance, Target Acquisition, and Reconnaissance

KDD Knowledge Discovery in Databases

LL Log Likelihood

MAC Medium Access Protocol

MANET Mobile Ad Hoc Network

MAODV Multicast Ad hoc On-Demand Distance Vector

ML Machine Learning

MLP Multi-Layer Perceptron

NB Naïve Bayes

NCW Network-Centric Warfare

NIDS Network Intrusion Detection System

NIP Network Infrastructure Protection

NN Neural Network

NOS Network Operating System

OHE One Hot Encoder

ONF Open Networking Foundation

OOB Out-of-Bag

PCA Principal Component Analysis

PHY Physical Layer

QoS Quality of Service

RCCTO Rapid Capabilities and Critical Technologies Office

REST Representational State Transfer

xvi

RF Random Forest

ROC Receiver Operating Characteristics

SDN Software Defined Network

SFIDS Software-defined Flow-based Intrusion Detection System

SLN Semantic Link Network

SNARC Stochastic Neural Analogy Reinforcement Computer

SMTP Simple Mail Transfer Protocol

SMO Sequential Minimal Optimization

Sta Station

SVC Support Vector Classifier

SVM Support Vector Machine

TCP Transmission Control Protocol

TPR True Positive Rate

TRANSEC Transmission Security

TWN Tactical Wireless Network

UAV Unmanned Aerial Vehicles

UDP User Datagram Protocol

UML Unified Modelling Language

VM Virtual Machine

xvii

List of publications

Zwane, S., Tarwireyi, P., & Adigun, M. (2018). Performance Evaluation of Machine

Learning Classifiers for Intrusion Detection. IEEE, International Conference on

Intelligent and Innovative Computing Applications (ICONIC)

Zwane, S., Tarwireyi, P., & Adigun, M. (2019). A Flow-based IDS for SDN-enabled Tactical

Networks. International Multidisciplinary Information Technology and Engineering

Conference (IMITEC).

Zwane, S., Tarwireyi, P., & Adigun, M. (2019). Ensemble learning approach for Flow based

Intrusion Detection System. IEEE AFRICON.

Zwane, S., Tarwireyi, P., & Adigun, M. (2019). Ensemble Learning for Flow-Based Intrusion

Detection in SDN. Southern Africa Telecommunication Networks and Applications

Conference (SATNAC).

1

Chapter 1: Introduction

1.1. Introduction

Modern military communications are revolutionising the way war will be fought in the future

by evolving towards a Network-Centric Warfare (NCW) paradigm (Wilson, 2004). In this

paradigm, strength is achieved through communications networks and information sharing.

This battle philosophy places the emphasis on the ability to achieve an internet-like capability

in operational areas, providing ubiquitous network access to enable “anytime, anywhere”

communication (Burbank et al., 2006). Tactical networks are those deployed to support users

and platforms within the tactical operational region, also known as the tactical environment.

Military tactical networks are divided into four important segments (Mishra et al, 2017). The

first segment comprises the computing infrastructure residing at the military headquarters.

Generally, the computing and communication resources at this segment are usually plentiful

and tend to be static. The second segment consists of the infrastructure network that connects

headquarters with the base environment used to support military operations and missions. It

uses satellite communications and sometimes leverages available infrastructures such as

cellular communication networks.

The third segment is the base environment that uses portable laptops, desktops computers,

networking equipment, and storage devices. The base is usually set up and used for a temporary

period, which sometimes ranges from a few days to a couple of months. It is used to provide

logistical support to military personnel who may be deployed to operations covering a large

area. Lastly, connecting to the base environment is the tactical segment.

The tactical segment consists of the portable devices and networks used by militaries’

personnel at the edge of the operations. It usually consists of various handhelds devices,

unmanned aerial vehicles (UAVs), mobile networking devices, intelligence surveillance and

reconnaissance (ISR) devices, and a computing environment to be carried onto different

platforms including ships, vehicles, and tanks. An ad hoc network can be formed by these

devices and platforms by themselves, which is called a tactical mobile ad hoc network (tactical

MANET). However, this network is not completely ad hoc as it usually relies on a limited

2

amount of infrastructural support, such as the other upper tactical environment segments for

information (Mishra et al, 2017).

As opposed to commercial networks, tactical networks usually operate in extremely harsh

environmental conditions such as desert, jungle, arctic, and maritime, where all those different

environmental conditions may have different radio frequency propagation and signal

characteristics that present a number of challenges. Figure 1.1. illustrates some of the

difficulties imposed by the tactical environment on tactical communication technologies.

Figure 1.1 Limitations experienced in a military tactical environment (Burbank et al., 2006)

The diversity of military tactical operations, the variety of equipment, the diverse speeds at

which numerous parts of the tactical operation take place, the scale, and the environmental

conditions all present difficult challenges to the full and smooth deployment and functioning

of tactical networks (Burbank et al., 2006). One of the major challenges to the tactical network

is communication and information security. For example, in the tactical segment of the

network, most of the devices are subject to capture by adversaries. Once captured, an adversary

can compromise the captured device to infiltrate the network for malicious intent, such as lead

troops into an ambush or gunfight with non-hostile forces. In addition, due to the wireless

nature of the tactical network, it is possible for adversaries to listen to unprotected

3

communications of their enemies or launch various kinds of cyber-attacks that can have

detrimental effects, such as issuing denial-of-service attacks to shutdown nodes from

communicating permanently or temporarily causing issues in the tactical network. As a result,

security in tactical networks remains a big challenge for both Academia and Industry (Ken et

al., 2017, Pawgasame et al., 2015, Little 2014).

In (Pawgasame and Wipusitwarakun, 2015) a survey discussing current issues and challenges

in tactical wireless networks was presented. The authors argued that hostile environments

where tactical wireless networks operate make it hard to protect information and data from

being dropped, modified, or stolen by an intruder. For example, in a hostile environment

network packets are regularly corrupted and dropped at nodes, and detection mechanisms might

perceive such behaviour as a threat and raise a false-positive alert. They also argued that

incorrect detection of hostile nodes in a hostile environment is one major research gap in the

security of tactical wireless networks. They claimed that preventative methods such as

cryptography are not sufficient for the protection of tactical networks, malicious nodes need to

be detected early before any harm is done, hence they stated that a precise and reliable intrusion

detection mechanism for the tactical wireless network is needed.

Also, Spencer et al. (2016) argued that there is no centralised management system by which

networks and services can be globally configured and provisioned in many deployed military

networks. This limits the flexibility of the network operator to make quick and urgent network

security and management configurations. They also argued that tactical networks are deployed

in different environments, hence, network movement and every modification to QoS

requirement encompasses a time-consuming planning and configuration processes which

degrades the speed of the network deployment, presenting challenges in terms of deploying,

redeploying, and managing information and security services, limiting the swiftness and

elasticity of a military force.

However, from those studies, it is evident that network management and security pose

important technical challenges that need extensive innovation in order to realise an ideal

tactical network solution (Burbank et al., 2006). Thus, regarding that, this research focuses on

analysing and addressing management and security challenges in tactical networks through the

utilisation of new emerging technologies. While different security solutions have been

proposed, such as authentication and cryptography, in (Atlam, Walters and Wills, 2018) the

authors argued that cryptography sometimes failed to handle some attacks, for example, denial-

4

of-service attacks. Atlam, Walters and Wills (2018) emphasised that it is critical to establish

an Intrusion Detection System (IDS) that is capable of identifying and reacting to attacks

efficiently in the network.

Intrusion Detection Systems (IDS) are needed in tactical networks to promptly and accurately

recognise cyber-warfare attacks as soon as they are initiated and to respond to them before any

harm is conducted. IDS are used to discover, determine, and identify illicit usage, access, and

demolition of information systems. The different types of IDS techniques are; misuse-based,

anomaly-based, and hybrid-based techniques. The misuse-based techniques, also known as

signature-based techniques, are aimed to detect attacks using known signatures of those attacks.

They are commonly known for their effectiveness in detecting known attack types without

producing a large number of false alarms. Their drawback is that they are ineffective in

detecting novel (zero-day) attacks, and they also require their database to be frequently updated

with rules and signatures manually.

On the other hand, anomaly-based methods learn normal network behaviour and identify any

deviations from the learned normal behaviour. Over the years they have been attractive since

they have the ability to detect zero-day attacks. They are also attractive since the profiles of

normal activities are customised for every application, network, or system, which makes it hard

for attackers to know which activity they can conduct without being detected. The disadvantage

of this method is a high false alarm rate, since new unseen legitimate system behaviours may

be categorised as anomalies. The hybrid method combines both the misuse- and anomaly-based

techniques. Hybrid methods are commonly used to improve detection rates of recognised

intrusions and also reduce false-positive rates for unknown attacks.

IDS for tactical networks have a number of ideal goals and objectives they should meet. These

include perfect accuracy and recognition totality (Little et al.., 2006). However, tactical

networks present unique challenges to intrusion detection methods, since they are ad hoc,

dynamic, and operate in harsh environments (Little et al.., 2006). As a result, the intrusion

detection methods used usually fail to meet the ideal goal and objectives. How to reduce false

alarms in tactical environments is one of the open research gaps that need to be addressed

(Pawgasame et al, 2015). In addition, due to the lack of stable infrastructure which results in

the absence of a centralised entity in the tactical segment (Spencer et al., 2016), this limits the

applicability of intrusion detection methods in these networks. Therefore, there is a need for an

5

appropriate mechanism that can allow centralised control and a global view in a tactical

network for successful IDS implementation.

More recently, Machine Learning (ML) techniques have shown promising results in intrusion

detection (Ken et al, 2017, Haq et al, 2015) through high detection rates and efficiency. On

the other hand, a newly emerged paradigm known as Software Defined Network (SDN) has

shown great opportunities for the networking community. The SDN architecture is defined by

the separation of the data plane from the control plane and consolidates the control plane

functionality at a central location in the network (Mishra et al, 2017). The concept of SDN can

offer a number of benefits to tactical military networks as it can allow improved traffic

management abilities, meaning quick configurations for service delivery to support current

operational priorities. SDN can also enable automation in military tactical networks, which will

decrease preparation overheads as units and headquarters move. Lastly, tactical networks

require skilled operators to support deployed military networks, SDN can reduce the burden on

such operators, meaning fewer expert operators will be required to support deployed military

networks (Spencer et al, 2017). It is, however, not clear what benefits SDN can provide for

intrusion detection tasks in tactical networks.

Hence, this study presents an IDS that takes advantage of ML capability to learn from the past

and SDN concepts to support service delivery in intrusion detection tasks to improve attack

detection in mobile wireless networks.

1.2. Motivation

Tactical networks play a special role in networking, especially in the military battlefield where

they support different kinds of devices in a very harsh environment. Network management and

security are identified as the major concerns as the rate of network attacks has increased

dramatically over the years and the tactics used by attackers continue to evolve. Given the low

physical security in military tactical mobile nodes, a multi-level protection mechanism is

required irrespective of the authentication used. Intrusion detection systems (IDS), acting as

the second line of defence after authentication have the potential to improve the security of

tactical networks by detecting different attacks and can help prevent other harmful attacks.

Unfortunately, due to their dynamic nature, and lack of fixed infrastructure in tactical networks,

IDS implementation in such networks is challenging and complex. Also, how to handle packet

6

processing flows efficiently for huge amounts of data remains a research challenge. Therefore,

there is a need to look at available options to implement IDS that address the current limitations

of IDS in tactical networks.

Alternatively, with the promising emerging SDN technology, exploring the possibilities and

opportunities this technology can provide in network security is important. Since network

attacks increase daily, network security improvements need to be a major priority to catch up

with these daily threats or attacks. SDN-based intrusion detection investigation will not only

benefit tactical networks but would also benefit other kinds of network technologies. It is

envisioned that this work will provide a Machine Learning IDS for SDN-based mobile tactical

networks. This architecture will allow efficient data collection as well as detect and mitigate

threats without any human intervention. It will also allow a mobile ad hoc network environment

to be able to run IDS more efficiently and have less false detection rates since the controller

will allow a global view of the network.

1.3. Problem Statement

Tactical networks are used in military operations so that airplanes, moving personnel, and tanks

can communicate. Being that nodes communicate via wireless links, these wireless links among

nodes are vulnerable to link attacks which comprise eavesdropping, leakage of secret

information, active interference, data tampering, impersonation, denial-of-service (DoS), and

message distortion. Additionally, in mobile ad hoc networks’ routing protocols, nodes usually

assume that other nodes would be reliable, trustworthy, and always cooperate to relay data

(Kumar & Dutta, 2016). This assumption leaves vulnerabilities in the network because

attackers can easily compromise the network by capturing and inserting malicious/non-

cooperative nodes in the network. This is especially true for military communications, given

the low physical security of mobile devices.

To achieve a secure network, detection measures such as intrusion detection systems (IDS)

serving as a second line of defence in addition to traditional authentication measures have been

investigated. To a certain extent, research work has previously been conducted in intrusion

detection for traditional wired networks. However, due to key architectural differences,

principal among them being the lack of fixed infrastructure and routing protocols used (Mishra

et al, 2004), applying this research to wireless networks is not an easy plug-and-play task.

7

Thus, the lack of a single or centralised management system by which network services can be

configured and provisioned limits the applicability of intrusion detection methods in tactical

networks (Spencer et al, 2016). Other issues include false detection of nodes in tactical

environments (Pawgasame et al, 2015), and performance and overhead concerns due to

complex rules used to investigate network traffic (Alsmadi et al, 2016). Therefore, tactical

MANETs require special IDS, designed specifically to benefit their needs and special

characteristics, which include limited resources (Ken et al, 2017, Liu et al, 2008) before they

can be safely deployed for industry use.

A technology paradigm that can provide a centralised and global view of the entire network,

also allowing applications containing network rules to be applied without affecting the network

functionalities is known as Software Defined Network (SDN). This work proposes an IDS that

takes advantage of the network global view provided by SDN and the learning and predictive

capabilities provided by Machine Learning (ML) to advance detection accuracy in Intrusion

Detection Systems of tactical MANETs. This study evaluates readily available ML algorithms

to select the most appropriate. These algorithms are then implemented for intrusion detection

tasks in SDN-based tactical MANETs and evaluated.

1.4. Research Questions

This research aims to address the following research question:

 How can an Intrusion Detection System (IDS) that promptly and accurately recognises

cyberwarfare attacks in tactical networks be designed and implemented?

1. Which state-of-the-art techniques are the most suitable for intrusion detection in

tactical networks?

2. How can we design an effective IDS model for tactical networks?

3. How can the designed IDS model be implemented and operationalised?

4. What techniques and metrics can be used to evaluate this IDS model?

8

1.5. Goal and Objectives

1.5.1. Research Goal

The goal of this study is to investigate and implement the most suitable Machine Learning

algorithm for intrusion detection in SDN-based tactical MANETs.

1.5.2. Research Objectives

The goal is broken down into the following achievable objectives:

1. To establish start-of-the-art network intrusion detection practices and the most suitable

techniques.

2. To evaluate and compare machine learning algorithms using network intrusion datasets.

3. To design and implement an IDS model for tactical networks.

4. To evaluate the effectiveness of the proposed IDS.

1.6. Research Methodology

To achieve the goal and objectives of this study, the Design Science (DS) methodology was

adopted and implemented as the main research. The DS method includes steps to create and

evaluate IT artefacts designed to solve an identified organisational problem, and it involves a

rigorous procedure to design an artefact to solve practical problems, make research

contributions, evaluate designs, and communicate results to appropriate audiences (Peffers,

Tuunanen, Rothenberger, & Chatterjee, 2007). In this research, the goal was to develop an

intrusion detection model for tactical MANETs. The IDS model was instantiated into a

prototype and validated through implementation. Thus, the DS methodology was broken down

into the DS research processes (see Figure 1.2) as outlined by (Peffers et al., 2007), that is, (i)

Problem analysis, (ii) Establishment of state-of-the-art, (iii) Solution design, (iv) and Solution

evaluation. A brief overview of these phases is given in the following subsections: 1.6.1 to

1.6.4.

9

Figure 1.2 Overview of the research methodology

1.6.1. Problem Analysis

(Hevner et al., 2004) stated that Design Science research must produce or develop a

technology-based solution that addresses an important and relevant business problem. In

military tactical scenarios, security is increasingly becoming an issue especially since more

devices are being connected/networked. Therefore, the need to continuously monitor and tackle

security issues is relevant. In that regard, this study addresses a relevant, real-world problem

that can benefit organisations to achieve improved network security and incident-handling

capabilities.

1.6.2. Establishment of state-of-the-art

To establish the state-of-the-art, this research used the literature review method. Recent

conference papers and journals were reviewed to identify limitations and challenges in current

network security approaches. The review also focused on the different security issues, attacks,

and vulnerabilities experienced in tactical networks, challenges observed in the implementation

of security mechanisms, and the performance of state-of-the-art network security techniques.

1.6.3. Solution Design

In this research, an IDS model for tactical networks was envisioned. By considering state-of-

the-art computing paradigms, namely Software Defined Networks (SDN) and Machine

Learning (ML), an IDS model was developed utilising SDN for network global view and data

collection, while ML algorithms were used for effective classification of network data. The

applicability of the model was demonstrated through the instantiation of a prototype based on

the model. This solution intends to address network security issues and challenges that exist in

military tactical networks.

10

1.6.4. Solution Evaluation

In this research, the proposed IDS (artefact) was deployed as a prototype to operationalise and

evaluate it. Simulated network traffic was used to analyse and evaluate the proposed IDS to

assess its quality and efficacy using experiments.

1.7. Research Contributions

In the recent era, the network structure itself is vulnerable to many different cyber-security

issues. Therefore, network security can be considered a major concern. In that regard, this

research explored how the existing attack methods can be detected and mitigated using recently

proposed cybersecurity and networking trends.

Firstly, Software Defined Network (SDN) is noted as one of the few trends with a wide range

of advantages to Tactical Networks. Thus, this work sets a foundation for further exploration

into SDN as a security inhancer solution while also spurring future works and exploration of

SDN potential in Tactical Netwoks. This study designed an IDS model that takes advantage of

SDN for efficient flow sampling and preparation. This study demonstrated by designing a

model for an intrusion detection system in SDN based tactical network, that SDN can be a

useful asset to IDSs.

Further more, in the quest for effective network intrusion detection approaches, Machine

Learning (ML) is also one of the fast growing fields and extensive research is being conducted.

However, most studies conducted in the IDS domain only conduct a performance analysis of

different Machine Learning algorithms using datasets without explicit demonstration of how

they can then be used and implemented. This is a drawback as comparing ML methods using

datasets obtained online doesn’t guarantee an effective IDS. Thus, this research followed the

Design Science method to develop a protype of the proposed model. This method offers an

important paradigm for conducting applicable and yet rigorous research. This approach allow

the development, implementation and evaluation of a proposed systems, which can be adopted

by other researchers in the field to evaluate their proposed ML based IDSs in addition to dataset

analysis.

In this research, SDN combined with an efficient ML model produced an intelligent IDS that

is capable of acquiring data from the tactical network devices. It then processes and analyze

11

such the data to identify intrusive behaviours, while able to take countermeasures in real-time

without any human intervention.

1.8. Organization of the Dissertation

The remainder of this dissertation is organised as follows:

Chapter 2 provides the theoretical background regarding the problem analysis and

technologies concerned. The chapter discusses the concepts of security in tactical

communication networks, intrusion detection, and the Software-defined networking paradigm.

This chapter also provides the related work found in the literature focusing on the different

approaches used for intrusion detection and methods of evaluation.

Chapter 3 presents the methodology adopted to fulfil and achieve the goal and objectives of

the study. This chapter helped guide the research to ensure rigour and facilitate the research.

Chapter 4 provides a performance evaluation of popular Machine Learning techniques

commonly used for intrusion detection. This chapter directly responds to the second research

objective, which is to analyse and select the most suitable Machine Learning method that can

be used for intrusion detection in tactical networks. From this chapter, two conference papers

were presented, one based on Packet-based NIDS (Zwane, Tarwireyi and Adigun, 2019d) and

the other on Flow-based NIDS datasets (Zwane, Tarwireyi and Adigun, 2019b).

Chapter 5 presents the proposed solutions for network security in resource-limited network

environments. The chapter proposes a Flow-based IDS model and explains its corresponding

components. Based on this chapter, a conference paper was published (Zwane, Tarwireyi and

Adigun, 2019a).

Chapter 6 presents the operationalisation of the model proposed in Chapter 5. In this chapter,

a proof-of-concept prototype of the model was implemented and evaluated for its effectiveness.

Another conference paper was generated from this chapter, which outlines the proposed

deployment architecture, test scenarios and preliminary results (Zwane, Tarwireyi and Adigun,

2019c).

Chapter 7 presents the results and discussions to help validate the proposed approach.

12

Chapter 8 concludes the study and the findings. The chapter summarises and further responds

to each of the research questions outlined for the study. The conclusion, limitations, and future

direction of this research are presented.

13

Chapter 2: Background and Literature

Review

This chapter investigates the state-of-the-art and debates its relation to security issues in tactical

networks. Conducting a detailed investigation of recent and innovative technologies could

enable us to identify paradigms that can be used to design an ideal intrusion detection

framework. This investigation also helps us to identify potential paradigms capable of

addressing some of the network and communication security concerns in tactical networks. In

accordance with the adopted methodology, Design Science Research, Step 1 is the problem

analysis phase where the gaps in existing literature are identified.

In that regard, this chapter explores the different technologies that can be adopted and

implemented, to achieve the aim of this research. This chapter is structured as follows: in

Section 2.1 the notion of network security and the security requirements for tactical networks

are presented. This aims to provide enough background and the area of interest for this research.

Section 2.1 further discusses different popular intrusion detection approaches available in the

network security research domain. This section gives a review of statistical, Machine Learning,

and other intrusion detection approaches.

 A review of the military tactical communication networks is presented in Section 2.3. The

section discusses the challenges presented by other researchers in the deployment and usage of

intrusion detection mechanisms on the military battlefield. In Section 2.4, the techniques

recognised as suitable for adoption in intrusion detection system design for tactical networks

are presented. Hence, ML and SDN are presented as the required solutions to mitigate the issues

currently experienced in tactical network IDS deployment. Studies utilising ML for the task of

intrusion detection are reviewed and their limitations are presented. Similarly, studies

presenting intrusion detection techniques using ML and SDN are also reviewed and gaps are

identified. Finally, Section 2.5 presents a summary of the issues, gaps, and future research

presented in the reviewed works.

2.1. Tactical Networks Security Challenges and Implications

The magnitude of instability in a hostile environment is enormous, as many problems and

challenges are encountered in tactical networks. Security is one of the most important issues to

be addressed. Network security plays an important role in tactical communication networks as

14

security breaches can directly affect mission success and cost personnel lives. Military tactical

communication presents many different challenges to network security researchers. Hence the

most appealing characteristics which influence such challenges are the nature of the network

environment since network members are usually mobile, and topology changes over time as

nodes randomly leave and join in an ad hoc manner. In addition, the devices or equipment are

subject to capture, and enemies are considered well-skilled and motivated.

Over the past years, researchers have tried addressing the many issues encountered in tactical

networks. For example, a protection mechanism that protects the physical layer from smart

jammer attacks was proposed by Jeung et al, (2011). Usually, a smart jammer is used by an

impostor to examine wireless channels for active channels and discharge a jamming signal on

that channel. The method by Jeung et al, (2011) refers the smart jammer to the incorrect channel

and prevents the actual channel from being jammed. Another example includes the efforts of

(Madhu and Sreekumar, 2014), where they used a wireless sensor network to implement a

secure unmanned vehicle navigation system. They used a cluster-based method where each of

the clusters contained a set of armed and sealed motes in a specific area to prevent physical

attacks, shown in Figure 2.1. In addition, a key management technique to avoid single key

compromise which usually led to the entire network being compromised was proposed through

using an improved version of LEAP. Their work resulted in a vehicle navigation system that

was controlled by wireless sensor networks making the network more secure. The authors also

claimed that their system was applicable to several applications, which include fire detection,

and maintenance and monitoring applications.

Figure 2.1 Unmanned vehicle to protect the battlefield (Madhu and Sreekumar, 2014)

The stated work applies as evidence of the effort towards ensuring security in tactical networks.

Unlike commercial wireless networks, tactical wireless networks operate in a hostile

15

environment where the conditions are very unstable. Pawgasame and Wipusitwarakun, (2015)

presented six issues that are encountered in tactical wireless networks as a result of the large

magnitude of instabilities in the harsh environments where they are deployed. The first issue

defined was the challenge of understanding the network’s behaviours. The great uncertainty in

the network makes it hard to describe and predict network behaviours and outcomes. The

ability of the network to cope with unstable changes was also reported as another issue

experienced in tactical wireless networks. For example, real-time information sharing is

required by some military applications, thus if the information transmission system cannot

tolerate disruptions due to a harsh environment, defence systems may lose track of the hostile

target. Another issue they reported in tactical wireless networks was network congestion.

Congestion occurs when multiple mobile nodes are trying to communicate across the network

gateway or access the same channel at the same time. Since instabilities may cause delays in

packet transmission, packets may arrive at the gateway at the same time and cause congestion.

In addition, congestion may also be caused during retransmissions due to unstable channels.

Also, in a hostile environment, packets may be corrupted or dropped due to the instability of

the network, this may result in unreliability in the data delivery (Pawgasame and

Wipusitwarakun, 2015). Intermittent interferences and hostile attacks may corrupt packet

header and route packets to the wrong destination. Thus, reliability remains an essential issue

that requires attention in tactical wireless networks. Also, the instability and dynamic

movement of nodes in a tactical network present availability issues, since nodes may be out of

range or links may be broken. As such, the ability of the network to provide network services

is also a challenge in a tactical wireless network. Finally, security issues are commonly

triggered by hostile attacks. For example, an adversary may insert malicious nodes into the

network to drop, modify, or steal information to introduce information reliability problems.

While sending huge numbers of packets could result in congestion and availability

complications, likewise, network robustness and availability can be violated through

communication disruption caused by an enemy jamming the communication signals. A

summary of tactical wireless networks’ research interests, gaps, and challenges are presented

in Table 2.1.

Table 2.1. Summary of research interest in tactical wireless networks (Pawgasame and Wipusitwarakun, 2015)

Research

interests

Solved Issues Gaps Challenges

16

Wireless

network

modelling

Analysing the

network

Hostile attacks capture

models

Modelling network hostile

attacks

Performance Robustness,

Reliability,

Congestion

The trade-off on each

technique

Performance improvement

against instability for

minimal trade-off effects

Routing Robustness,

Reliability,

Availability,

Security

Unstable reliable routes

in a hostile environment

The predictable route is more

attractive in a hostile

environment

Security Security,

Availability,

Reliability

False detection of

hostile nodes in a

hostile environment

Accurate detection of hostile

nodes in the hostile

environment

Management Congestion and

Reliability

Hard to achieve

management in

uncertain networks

Management with uncertain

network parameters

In (Spencer et al., 2016), the authors argued that the delivery of information services was hard

to achieve due to the nature and structure of the deployment environment. They reported that

the general characteristics of military networks, which include heavy reliance on wireless

barriers, critical reliance of the commander on real-time access to information, and network

installations and reinstallation at very short notice, introduces problems to network managers

as they have to deliver vital information with the required quality of service in the face of

changing operational priorities (Spencer et al., 2016). They further argued that in various

deployed military networks there is no single management system by which networks and

services are configured and provisioned. Hence the creation of a hostile set of services in the

tactical environment becomes a complex exercise in terms of planning and configuration, as

there is a need for the manual configuration of a large number of devices, and this approach is

also prone to human error.

The issues presented by (Spencer et al., 2016) serve as an example of other issues in the military

tactical network that affects or limits the swiftness and elasticity of a military force. This is

because the operational tempo is degraded due to time-consuming planning and configuration

processes undertaken each time the network, or part of the network, is moved. In addition, an

expert signaller needs to be available at every networked site to support the delivery of

17

information services which is usually a burden in terms of training and logistics in order to

maintain and support such personnel (Spencer et al., 2016). The mentioned studies illustrate a

clear picture of the challenges and issues of experience in tactical networks. Some issues are

introduced due to the environment in which such a network is deployed, and other issues are

introduced by the general characteristics of the tactical network. We also observe that in

addition to security challenges, the lack of centralised control and management where security

services can be provisioned in tactical networks remains a gap that needs to be addressed.

Sterbenz et al., (2002) presented issues and challenges experienced in improving the

survivability of mobile wireless networks and military networks’ requirements. The authors

presented six security and operational requirements for wireless networking technologies to

support military operations:

 Transmission security (TRANSEC) – concerned with protecting wireless

communication at the physical layer, medium access, and data link layers over wireless

media.

 Communication Security (COMSEC) – concerned with protecting data and voice

communications between designated endpoints, it is one of the most important security

requirements that must be addressed.

 Network Infrastructure Protection (NIP) – defined as the protection of routing and

network management infrastructure against both passive and active attacks.

 Authentication and Access Control (AAC) – defined as the support for multi-level

security measures by implementing role-based access control on the application,

application servers, and their proxies.

 Robustness – defined as the requirement for supporting hardware and software failure,

asymmetric and unidirectional links, or limited connection range of wireless

communication.

 Effectiveness – defined as efficiency in the use of electrical and computing power,

silicon real estate, and communication bandwidth.

While those security requirements are equally important in securing networking technologies

supporting military operations, in this study, we only focus on NIP through intrusion detection

systems (IDS). Early efforts of IDS focused more on protecting the hosts from malicious

intents. These systems were known as host-based intrusion detection systems (HIDS).

However, with the birth of computer networking and its adoption by organisations, part of the

IDS research shifted towards network intrusion detections (NIDS) which is the area of study

18

in this research. The next section presents popular network intrusion detection techniques

proposed by other researchers to address network security in communication networks.

2.2. Categorisation of NIDS Techniques

The purpose of network security is to serve as a mechanism to guard network resources and

users against unauthorised and malicious intermediaries. Network security problems are

intricate and valid for all types of computer networks regardless of whether they are for home

users, commercial use, or military purposes (Karresand, 2004). Thus, network security plays a

very important role in today’s communication systems because they ensure confidentiality,

integrity, and availability (CIA) of communication and network resources. However, in recent

years different attacks have been formulated to attempt to compromise these CIA principles

(Kidston et al., 2010).

Intrusion detection systems (IDS) are an essential tool for protecting IP-based networks and to

a certain extent maintain the CIA principles. IDS examine network traffic and computer system

logs to identify attacks and raise alerts if attacks are detected. Traditional methods of intrusion

detection employed deep packet inspection or stateful protocol analysis to detect attacks in

network traffic (Fahad, Sher and Bi, 2017). Stateful protocol analysis checks complete

semantics of protocols against a specified range and considers out-of-range values as

intrusions. This method is regarded as computationally expensive (Fahad, Sher and Bi, 2017).

On the other hand, deep packet inspection presents challenges when the monitored network

traffic is encrypted, additionally, it is computationally expensive to inspect complete packet

payload and can cause performance bottlenecks in a high-speed IP network. (Karresand, 2004)

argued that one of the most critical challenges in intrusion detection is encryption. They

claimed that the main key in network intrusion detection systems is to inspect the packets sent

over the network. This implies that the more information available the more efficient and

correct the detection will be. However, when different parts of the packets or parts that

approximately relate to the different layers in the OSI stack are encrypted, the efficiency of the

network intrusion detection system decreases. Their claim is valid, especially in military

networks, as very strong and thorough encryption policies are used to ensure the confidentiality

of the information sent (Karresand, 2004).

As an alternative approach to those limitations, researchers such as Fahad, Sher and Bi (2017)

proposed a flow-based intrusion detection system. This is a new solution to protect IP networks

19

from unauthorised access. Flow-based Intrusion detection systems utilise network flow records

as input and analyse them to discover whether the network traffic is either normal or malicious

(Fahad, Sher, and Bi, 2017). Flow-based IDSs have become attractive to researchers due to the

number of advantages they offer over traditional deep packet inspection techniques for

intrusion detection. For example, 1) Flow-based inspection of packets has fewer privacy

concerns than packet-based inspection since user information or payload is sheltered from any

transitional scans. 2) Flow-based Intrusion detection can handle encrypted data as it only

analyses packet header or flow information. And 3) Flow-based IDS are reported to have the

ability to operate on high-speed backbone links, low deployment costs, and near real-time

response, (Fahad et al., 2017). In this work, we adopted flow-based attributes for the proposed

intrusion detection system, since it is more effective than using traditional packet-based

attributes in terms of speed, resource usage, and real-time detection of attacks. Hence, we

present a methodology for gathering network flow data in an SDN enabled network.

The adoption of flow-based intrusion detection has resulted in the proposal of different

techniques for its design. A taxonomy of flow-based intrusion detection techniques was

presented by (Fahad, Sher and Bi, 2017), shown in Figure 2.1. The taxonomy hierarchy

classifies flow-based intrusion detection system approaches into statistical, Machine Learning,

and other techniques.

20

Figure 2.2 Taxonomy of flow-based intrusion detection techniques (Fahad, Sher and Bi, 2017)

In statistical techniques, the system builds a profile of the network traffic using a statistical

function of the network traffic parameters (Fahad, Sher and Bi, 2017). The created profile is

then used to compare incoming unseen traffic. The technique uses statistical measures to

calculate the similarities between network traffic and the profile of normal network traffic. If

the similarities are beyond a defined threshold the flow is marked malicious, otherwise normal.

(Fahad, Sher and Bi, 2017) divided statistical methods into univariable, multivariable, and

time-series statistical methods, see Figure 2.2.

Univariable statistical techniques (Ye et al., 2002) are methods that analyse a single variable

at a time, this can be the mean or standard deviation. Generally, they assume an underlying

known distribution of the data. In a multivariable technique, the relationship between two or

more variables is analysed. Lastly, time-series statistical methods (Viinikka et al., 2009) use

previously observed or seen values to predict new values.

Machine Learning (ML) is a field of computer science that trains computers to think like

humans and make decisions when required (Haq, Onik and Shah, 2015). These methods try

and copy human thinking practices which include logical reasoning, intuition, learning from

past experiences, trial and error, and generalisation. ML techniques have been used extensively

21

over the years, and they continue to be applicable in flow-based intrusion detection as well. A

comparison of both statistical and machine learning techniques as presented in Table 2.2.

Table 2.2. IDS technique advantages and disadvantages

ID techniques Advantage Disadvantage

Statistical

techniques

 Don’t require previous

knowledge of network attacks.

 Can precisely detect attacks that

cause abrupt and highly differed

changes in network traffic.

 High dimensionality in network traffic

affects performance.

 Challenging to calculate the indicators

of normal network traffic.

 It can be bypassed by small and slow-

ramped attacks that keep the effect of

attack below statistical thresholds.

Machine

learning

techniques

 Can adjust themselves

according to the traffic passing

through.

 Have a high detection rate.

 Methods like ANN are able to

generalise the model from

limited information.

 Difficult to construct representative

training datasets for supervised

Machine Learning methods.

 Can be computationally costly during

training.

 Have high false-positive alarm rates.

 Unsupervised learning techniques need

background information to determine

the number of groups.

Other common techniques used for flow-based IDS are entropy, flow metric thresholds, flow

signatures, and semantic link networks (SLNs) (Fahad, Sher and Bi, 2017). The idea behind

entropy is to capture important characteristics of features in the traffic distribution and use

these features to detect abnormalities and malicious behaviour in the network traffic. The

commonly used entropy methods include Shannon (Zaidi et al., 2017), Renyi, and variations

of Tsallis entropy (Berezinski et al, 2014). The flow metric threshold is also used to detect an

intrusion in the network flows. For example, one can specify an upper or a lower bound

threshold that can send alerts if the specified threshold is being violated by any flow passing

through the observation point. SLN mines the time, location, and other related information

from the flow data which is used by the semantic links to detect suspicious flows on

probabilistic semantic networks (Fahad, Sher, and Bi, 2017).

22

(Choudhary et al., 2018) presented a survey based on IDS tools with particular focus on

vulnerabilities and attacks directed towards a networked Unmanned Aerial Vehicles (UAV)

environment. In their work, they presented the key component taxonomies of the UAV IDS.

The components of the taxonomy are shown in Figure 2.3. The work also argued that to achieve

a UAV-IDS system that ensures the necessary levels of effectiveness and efficiency, the IDS

computational cost, threat and behaviour modelling, detection latency, implementation

overhead, threat assessment, maximum network throughput, minimum resource consumption,

and effective monitoring and response are challenges that need to be addressed to construct a

secure cyber-physical UAV-IDS system (Choudhary et al., 2018).

Figure 2.3 Taxonomy of UAV-IDSs (Choudhary et al., 2018)

In that regard, this study focused on state-of-the-art NIDS techniques regarded as most

effective for intrusion detection. Another aspect that is usually ignored by researchers is how

to handle data collection and processing in a timely and efficient manner to accommodate high

volumes of data (Sultana et al., 2019). In this study, the possibility of Software Defined

Networks (SDN) to ensure efficient and real-time data collection from the network is

23

considered. Hence in the next section, the state-of-the-art techniques and approaches that have

the potential to address the challenges of intrusion detection systems in communication

networks are presented.

2.3. State-of-the-art NIDS Techniques

Intrusion detection systems can be constructed using different techniques including statistical,

time-series, ML, and others. Our study focusses on ML-based techniques as they are being

continuously adopted due to their effectiveness when compared with other intrusion detection

techniques (Fahad, Sher and Bi, 2017) (Khraisat et al., 2019). Also, Machine Learning and

Artificial Intelligence (AI) have many potential applications in the military context in different

domains and all levels of warfare (Svenmarck et al., 2018). For example, “ongoing advances

in artificial intelligence (AI)” is planning to change society and eventually the character of war

in accordance with the 2018 National Defense Strategy. The DoD has prioritised AI investment

to retain multidomain supremacy over peer and near-peer opponents. The DoD AI approach

calls for quickening the delivery and approval of AI to establish a common foundation to scale

AI’s impact across the department and enable decentralisation, development, and

experimentation; developing partnerships with industry, academia, allies and partners to

promote an AI workforce and to lead in military AI ethics and safety.

In addition, with the introduction of SDN, many researchers are now focusing on how SDN

can help address limitations presented by tactical network deployment architecture. For

example, in (Poularakis, Iosifidis and Tassiulas, 2018) an innovative architecture design for

SDN-enabled mobile ad hoc networks was proposed. SDN has the potential to promote more

advanced traffic management in the tactical boundary (Spencer et al., 2016; Poularakis,

Iosifidis and Tassiulas, 2018) and other domains. Also, Yan et al., (2016) argued that SDN

introduces opportunities for improved traffic management agility, as the complexity and

volume of traffic from tactical systems grows. This study focuses on how state-of-the-art

technologies such as SDN and ML can be utilised to improve network intrusion detection

capabilities in tactical communication networks. The next subsections present works already

done by other researchers in the field of intrusion detection using SDN- and ML-based

approaches respectively.

24

2.3.1. Machine Learning-based IDS

Approach

ML methods have recently been applied extensively in cybersecurity applications. ML

classification algorithms commonly used for intrusion detection are applied in the form of

Single classifiers, Hybrid classifiers, and Ensemble classifiers (Govindarajan and

Chandrasekaran, 2012). Single classifiers are utilised when a single ML algorithm is used to

construct an intrusion detection system. Hybrid classifiers offer a combination of more than

one Machine Learning algorithm. Ensemble classifiers use multiple weak learners, such as

classifiers performing somewhat superiorly to a random classifier. Hybrid classifiers are

preferred over single classifiers, this is because one algorithm can be used for pre-processing

the samples in a training set, removing non-representative training samples, then the results can

be given to the second algorithm for pattern recognition to design a classifier, this method can

vastly improve intrusion detection performance. Some of the most popular ML classification

algorithms used in intrusion detection tasks include: 1) Decision Tree (DT) with Gini index

(Breiman et al., 1984), Gain-ratio (Quinlan, 1993), and Chi-square (Mingers, 1989b), 2) Naïve

Bayes (NB) (Division et al., 1997), 3) Support Vector Machine (SVM) (Chen et al., 2018), 4)

Multi-Layer Perceptron (MLP) (Djuris, 2012), 5) Adaptive Boosting, 6) Bayesian Network (BN)

(Division et al., 1997), 7) Random forest (RF) (Jabbar et al., 2017), and 8) Bootstrap

Aggregation.

In (Buczak and Guven, 2016), an ML and DM methods used in the cybersecurity literature

review was presented. The authors reported that the most effective method for cyber

applications has not been established, they stated that due to the fertility and complexity of

these techniques, it was difficult to make one recommendation for each task. Everything is

based on the nature of an attack that the system was intended to detect. The authors further

argued that when determining the effectiveness of ML/DM methods, there are several criteria

that one needs to take into consideration; the accuracy, complexity, classifying speed, and

understandability of the final solution of the ML/DM method. Their study also highlighted the

importance of data sets in ML/DM for cyber intrusion detection. Buczak and Guven (2016)

reported that for effective anomaly or misuse detection, it is beneficial for IDS to be able to

reach network and kernel-level data, if possible, network data should be augmented by OS

Kernel-level data. Their study however only focused on previously conducted works to analyse

the usability of ML/DM in the context of intrusion detection. This study takes this work further

25

by proposing an IDS method that utilises ML and conducts a performance evaluation of the

system.

In (Yuill et al., 2000) an intrusion detection technique to assist system administrators with

intrusion detection problems encountered during incident response is proposed. The main goal

was to identify the network devices that are likely to be compromised by an attacker. The

authors proposed a solution based on the assumption that during an attack, the attacker reveals

information about themselves and about the network vulnerabilities, which can be used to

identify the networks likely compromised devices (Yuill et al., 2000). Based on the US military

battlefield intelligence process, the authors constructed models of the network as a battlespace.

They constructed models of the attackers’ capabilities, intentions, and course of action. They

used the economies of crime, which is referred to as the theory behind criminal behaviour, to

model the attackers’ course-of-action. Finally, the models of network and attackers were used

to identify the devices that are more likely to be compromised (Yuill et al., 2000).

In a recent study by Pushpa and Kathiravan (2016), a cross-layer based multiclass intrusion

detection system for secure multicast communication of MANET in a military network was

presented. The authors introduced an indirect internal stealthy attack by skipping the collision

avoidance mechanism against the unicast route discovery control packets of tree-based

multicast routing protocol MAODV. They then analysed the robustness of the MAODV against

indirect and direct internal stealthy attacks such as black hole and deny-to-forward, where they

observed severe impact in PDR, throughput, and control overheads (Pushpa and Kathiravan,

2016). The authors then proposed a cross-layer based distributed Machine Learning anomaly

detection system to protect against those stealthy attacks. They used MAC and routing layer

integrated features instead of routing layer features alone to improve accuracy. The method

presented high effectiveness for anomaly detection in military networks, however, their method

is prone to high resource consumption and slow as it needs to collect data from different layers,

such as the MAC and routing layer. Therefore, the present study envisions an intrusion

detection approach that will only analyse flow-based data to reduce data collection and

processing challenges.

In (Rhodes et al., 2005), a maritime situation monitoring and awareness system using learning

mechanisms was presented. Their system takes real-time tracking information and uses

continuous on-the-fly learning which enables concurrent recognition of patterns of current

states of single vessels in a local vicinity. Their learning system used a modified version of the

26

Fuzzy ARTMAP neural network classifier (Carpenter et al., 1992). In essence, the approach

consisted of an unsupervised clustering algorithm and a supervised mapping and labelling

algorithm (Rhodes et al., 2005). Their study illustrates the successful implementation of

Machine Learning and AI in military settings. However, their implementation of Machine

Learning techniques does not address communication security, instead, it focuses on vassal

prediction. The present study applies Machine Learning to improve intrusion detection

capabilities in military communication networks.

Liu et al. (2018) proposed an SVM-based weighted learning limit learning machine based on

extreme learning machine (ELM) to address the problems of large amounts of data, high-

security, and intrusion detection requirements in civil-military integration. The authors adopted

an ELM mechanism since it is a fast learning method of a single hidden layer feedforward

neural network, where the whole learning process is completed only once without iteration and

resulting in extremely fast learning speed. In their approach, they first clarify the hidden layer

of responsibility for each node, instead of tentatively setting the number of nodes required for

the hidden layer like the original ELM, the number of nodes needed for a hidden layer is

determined according to the classification purpose. Then SVM weight is used to optimise the

weight and offset of each node. This ensures that each node has a better ability to complete the

task of generalisation. The results obtained from their experiments indicate that SVM-ELM

has higher detection accuracy and can quickly complete the training with superiority and

stability compared to BP algorithm (Liu et al., 2018). The authors claimed that for data-based

civil-military integration equipment support system construction, they recommend

implementing their method of intrusion detection. However, their study used the DARPA 1999

KDD dataset to assess their intrusion detection approach. Recent studies have argued that these

datasets should no longer be used to evaluate intrusion detection methods because they are old

and not a correct representation of modern network patterns (Gogoi, Bhuyan and

Bhattacharyya, 2012). The present study will utilise a more recent intrusion detection

evaluation dataset and network data sampled from a simulated tactical environment.

Revathi and Malathi (2013) compared the effectiveness of five Machine Learning models, such

as Random Forest, J48, Support Vector Machine, CART, and Naïve Bayes. They observed that

Random Forest outperformed the other algorithms by achieving higher test accuracy than the

others. In a survey (Haq, Onik and Shah, 2015), the authors argued that SVM and ANN

algorithms are usually the most popular approaches proposed for single learning classification.

In addition, AdaBoost and majority voting are the most popular ensemble classifiers for

27

intrusion detection. More recently, (Ertam, Õ and Yaman, 2017) compared Naïve Bayes,

Bayesian Network, Random Forest, Multi-Layer Perceptron, and SOM for intrusion detection

in computer networks. The authors found that MLP achieved high accuracy followed by

Random Forest and Bayesian Network. The authors also reported that even though MLP

achieved higher detection accuracy, the process of building the model for MLP took about 12

hours, which is undesirable, so they recognised Random Forest and Bayesian Network as best-

performing in their study.

ML has been successfully deployed in a number of military applications, for example,

surveillance and underwater mine warfare (Svenmarck et al., 2018). However, for security

applications, ML-based IDSs have been proposed and studies analysed their performance using

datasets. Evidence of increased classification accuracy of attacks and automated model

construction was reported. With those attributes, the adoption of ML techniques to enforce

security in military tactical networks becomes an obvious choice since it can ensure perfect

detection and recognition totality in such networks. However, most studies propose ML for

intrusion detection without demonstrating how such systems can be operationalised. This study

focuses on finding the most suitable ML algorithm then designing and implementing an IDS

utilising such an algorithm to demonstrate the operationalisation of such a system. This will

ensure that ML algorithms are not only recommended as better-performing using datasets but

also consider their performance from a deployment point of view.

2.3.2. Software-Defined Network-based

NIDS

Since SDN can facilitate dynamic policy control of a network, (Spencer et al., 2016) argued

that this can help establish services automatically based on policy, reduce planning overheads,

reduce the operator burden and configuration errors. They also reported that network resources

allocated to each service and the path taken through the network by the service’s traffic can be

dynamically controlled through SDN. This implies that network resources can be focused on

mission goals even as mission priorities change(Spencer et al., 2016). For example, (Ji Qing et

al., 2015) Proposed a flattening military network resource management framework that was

based on Software-defined Networking (SDN) technologies, Figure 2.4.

28

Figure 2.4 Resource management framework with SDN control (Ji Qing et al., 2015)

The authors modelled the relationship between military operations and further proposed a pre-

combination service component-based resource optimisation method. Their simulation results

indicated that their method improves the average response time for service requests. In their

study, the authors focused on addressing network management issues in tactical networks

(Spencer et al., 2016). Their work further demonstrated the effectiveness of SDN in terms of

logical controlling, where network services can be centrally managed and configured (Spencer

et al., 2016). This study extends the presented work by utilising SDN central logical controlling

capabilities for network intrusion detection and mitigation as opposed to resource management.

Researchers in security have also investigated the use of SDN-enabled techniques for intrusion

detection and mitigation, (Alsmadi and AlEroud, 2017) (Chang et al., 2013) (Monshizadeh,

Khatri and Kantola, 2017) (Yoon et al., 2015) (Boero, Marchese, and Zappatore, 2017).

Bhunia and Gurusamy. (2017) proposed an SDN-based framework called SofThings for the

detection of anomalies and mitigation of anomalies in IoT traffic. The objective of the

framework was to achieve early detection of traffic anomalies closer to the edge of the network

instead of detection at the core or higher levels of the network. This enabled fast identification

of attacks on IoT devices and the initiation of mitigation procedures as appropriate. In the study,

the Support Vector Machine (SVM) Machine Learning algorithm was used to detect anomalous

traffic. Precision and recall were the two performance metrics used to measure the performance

of the framework. From the results of the study, the authors observed a few false-positives

29

when linear SVM was used, hence obtaining lower precision of detection. They further

observed that when using non-linear SVM they obtained better precision. This was because

non-linear SVM uses the Kernel trick and consequently reduces wrong detection. In addition,

they also reported that their method can quickly restore the throughput loss, and is hence able

to mitigate different attacks within a few seconds. In this study, we employed a similar

approach; that is, adopt both SDN and machine learning to design an IDS. However, instead

of focusing on IoT scenarios, our study took into consideration the tactical military network

scenarios.

The work of (Kidston et al., 2010) proposed a cross-layer framework to help solve network

security issues in tactical networks. The framework supports automation and efficiency which

is very useful in tactical networks. The framework proposed by the authors promotes the

coordination of security services across the different communication layers. It was influenced

by the fact that by taking metrics from the security services at one layer, for example, the

authentication system and IDS, operations at other layers can be made more secure or optimised

(Kidston et al., 2010). For example, authentication and IDS operating at the application layer

can provide real-time attack profiles into an integrated cross-layer security service. These

results can then be passed to the other lower layers to improve their efficiency and robustness.

However, this method increases the complexity and internal processing within a node, also

increasing the communication requirements between nodes. The authors argued that security

services that can be integrated using their framework include IDS, frequency hopping, and

distributed authentication.

Wrona and Szwaczyk. (2017) argued that SDN networks offer a promising framework for the

implementation of cross-layer data-centric security policies in military communication

systems. They argued that one of the most important aspects of designing advanced security

solutions is thorough experimental assessment and validation of proposed technical concepts

prior to deployment in operational military systems. In their work, they proposed an OpenFlow

based testbed for validating SDN security mechanisms. Their method can handle both

mechanisms for protecting the SDN layer and data-centric security policies. The results

obtained in their study confirmed their method’s ability to validate simulation and analytic

predictions.

In a study by Giotis et al. (2014) a scalable mechanism for performing anomaly detection and

mitigation in SDN architectures is proposed. The mechanism is comprised of a) reduced data

30

gathering with sampling being handled by the sFlow protocol, b) Anomaly detection, which

was implemented by an entropy-based algorithm, and c) network-wide anomaly mitigation

using OpenFlow. The authors further demonstrated that OpenFlow statistics collection and

processing introduced scalability issues since it overloads the centralised control plane. They

also argued that in low traffic environments, the performance of their mechanism was

comparable to the native OpenFlow implementation. Moreover, they stated that in terms of

resource usage, the proposed sFlow based approach presented superior behaviour compared

with the native OpenFlow mechanism. Taking into consideration the lack of resources in

tactical devices, this study will use sFlow sampling to ensure efficiency instead of the native

OpenFlow sampling mechanism.

In (Sultana et al., 2018) a survey with the overview of programmable networks, such as SDN,

and various Machine Learning (ML)/ Deep Learning DL approaches were presented. The

survey presented different challenges experienced while developing a flexible and efficient

NIDS using ML/DL based techniques (Sultana et al., 2018). The authors reported that one of

the most predominant challenges is choosing the appropriate feature selection methods that can

precisely determine relevant features for the IDS. They also argued that the existing dataset is

not accurate for research and academic predictions. This issue makes it essential for researchers

to create datasets to ensure consistent and accurate evaluation of NIDS. Another fundamental

challenge of SDN-based NIDS presented by the authors was how to handle the processing of

a high volume of data.

The study conducted by Sultana et al. (2018) also argued that to design a centralised SDN

controller that can monitor and implement real-time intrusion detection in high-speed networks

is a desired future goal that will be challenging to address. However, since this work proposes

a flow-based intrusion detection method, it is capable of providing real-time network security

solutions in high-speed networks. This is because the proposed method analyses network flows,

which contains the summary of the packet header and not the packet payload as traditional deep

packet inspection approaches do.

The work of Giotis et al. (2014) proposed a mechanism utilising sFlow for data gathering and

sampling instead of the native OpenFlow protocols. This work adopts a similar approach. We

employ the sFlow protocol for data gathering and sampling on top of SDN. This reduces

processing overload and scalability issues in the control plane (Giotis et al., 2014). This

approach also has the potential to address the challenge of handling packet processing flows,

as mentioned by (Sultana et al., 2018).

31

2.4. Summary

Security requirements for tactical networks range from transmission security, communication

security, authentication and access control, network infrastructure protection, and others. This

study focusses on network infrastructure protection as a second line of defence in addition to

encryption techniques used to address transmission, authentication, and communication

security. To address NIP, one of the most effective solutions is network intrusion detection

systems. Over the years, different intrusion detection techniques have been proposed which

include the use of rule-based, statistical, and ML-based techniques. However, the environment

and the nature of tactical networks present challenges to intrusion detection techniques. The

implementation of intelligent security solutions in such networks requires add-on mechanisms

that can allow logically centralised management for effective provisioning of security services

(Spencer et al., 2016) and an intelligent intrusion detection method that can detect malicious

activities with high detection rates and presents minimal false detections.

In this chapter, an overview of network security, intrusion detection, and different challenges

experienced in tactical network security was presented. This chapter further reviewed different

works proposing intrusion detection systems that use ML as the detection method. The works

reviewed indicated that it remains unclear which ML algorithm can perform better or can

achieve higher accuracy in detecting hostile attacks in tactical networks. Different approaches

have been proposed and evaluated by other researchers, however, most of their evaluations are

conducted using outdated datasets (very old) and there is no evidence of actual deployment of

these techniques to validate their performance in their respective production environments.

Furthermore, the lack of centralised management for effective provision of security services

led to the investigation of SDN and its advantages in addressing IDS requirements in tactical

networks. Different works proposing intrusion detection techniques that use SDN for intrusion

detection were also reviewed. The review indicated that SDN can effectively and efficiently

gather network data in real-time and globally for IDS to ensure timely and quick identification

of network security breaches. From this chapter, we find evidence that an effective IDS for

tactical MANETs can be constructed using SDN capabilities and ML techniques integrated to

develop an intelligent IDS that can monitor and detect intrusions effortlessly without any

human intervention.

32

Chapter 3: Research Design and

Methodology

As mentioned in Chapter 1, this study aims to address the problem of intrusion detection in

tactical military networks. Military tactical networks are usually resource-constrained and

deployed in harsh environments where network communications are not stable due to different

terrains types. In that regard, security approaches such as Intrusion Detection Systems (IDS)

deployed in this network usually suffer from high false detection rates due to constant changes

and mobility in the network. In addition, detection and handling of security incidents doesn’t

happen as quickly and efficiently as possible, which has a negative impact on the functioning

and availability of the network. The goal of the study is, therefore, to investigate and implement

the most suitable Machine Learning (ML) algorithm for intrusion detection while utilising SDN

to improve network security in tactical mobile ad hoc networks.

In this Chapter, different Computer Science and Information Systems (CS/IS) methodologies

that can be adopted by a researcher for their study are presented. A review of theoretical,

Simulation, Experimentation, Case Study, and Design Science was conducted in order to

determine the most effective method for this study. Due to the objectives and goal of this study,

Design Science and Experimentation were the most appropriate methods to use. This study

required that experiments be conducted to determine the most effective ML technique in

detecting intrusions, which influenced the selection of experimentation methodology. Also, in

accordance with the third research objective, the Design Science method was the most

appropriate to facilitate the design and development of the IDS for tactical networks as it

ensures a rigorous process to design an artefact intended to solve an observed problem (Hevner

et al., 2004), which is intrusion detection in this study.

Furthermore, the use of ML techniques requires that ML models be constructed and validated

before they can be integrated and deployed. To facilitate this process, the data science project

life-cycle was used. The data science project life-cycle contains steps and guidelines to ensure

the development of quality and effective ML models, discussed in Subsection 3.2.3. To

evaluate the IDS, instead of accuracy, the most-used metric for evaluating IDS models, the

precision, recall, f-score, and AUC metrics were used since they are independent of the

“accuracy paradox” (Boutaba et al., 2018). These metrics are described in Subsection 3.2.4.

33

3.1. Research Methods Overview

Good quality research mainly focuses on the approach taken to address the problem under

investigation, and the ability to document and demonstrate that the research findings can be

reproduced. Moreover, research, in general, must have a sound basis in existing knowledge and

theory to ensure that research was conducted.

“…research is used to refer to the activity of a diligent and systematic inquiry or investigation

in an area, with the objective of discovering or revising facts, theories, applications, etc. the

goal is to discover and disseminate new knowledge.” (Ayash, 2014)

Research in the field of Computer Science (CS) and Information Systems (IS) is usually

conducted through the application of one or more research methods. (Ayash, 2014) recognised

three popular research methods for CS and IS namely: theoretical, simulation, and experimental

methods. Other methods include Design Science (Herver et al, 2004), case study (Demeyer,

2011)(Yin, 1994), and surveys (Pfleger and Kitchenham, 2001).

1. Theoretical Simulation

Theoretical research methods are based on classical methodologies since they are related to

mathematics and logic. This method is devoted to the algorithm analysis and design to discover

solutions or to improve existing solutions. Within all the fields in CS, this method attempts to

explain the limitations of computation and the computational paradigms. For example,

theoretical methods are used to model a new system, and it can help in the discovery of theories

and new mathematical models. However, theoretical methods may still use other methods to

demonstrate the efficiency of new theories or models (Ayash, 2014).

2. Simulation

Simulation methods are commonly used in the CS domain since they offer the opportunity to

explore systems that are external to the experimental domain or system that is under

development or construction. This may include complex occurrences that cannot be realised in

a laboratory. Domains that usually adopt simulation include, Astronomy, Physics, Economics,

and specialised areas such as, the study of artificial life, virtual reality, or non-linear systems

(Ayash, 2014).

3. Experimentation

34

The experimentation method refers to the task of conducting experiments that will occur in

order to acquire results from real-world implementation. Experiments are commonly used to

test veracity and theories. CS fields that usually adopt experimentation methods include, ANN,

natural languages, automating theorem proving, and analysing performance and behaviours

(Ayash, 2014).

4. Case Study

A case study is an empirical inquiry that investigates a contemporary occurrence within a real-

life context. It is commonly used when the limitations between the occurrence and context are

not clearly evident (Demeyer, 2011).

5. Design Science

Design Science (DS) is a method that strives to extend the limitations of human and

organisational abilities by creating new and innovative artefacts (Hevner et al., 2004). The

Design Science research methodology incorporates, practices, procedures, and principles

necessary to carry out the research with three main objectives: it is consistent with past

literature, it offers a nominal procedure model for undertaking research, and it provides a

mental model to present and evaluate the research. The frame work of DS as presented by

Herver et al.(2004) is hwon in Figure 3.1.

Figure 3.1. Information System DS Research Framework (Hevner et al., 2004)

35

3.2. Method Selection

In this research, the aim is to investigate and implement an ML-based intrusion detection

system in an SDN-based tactical MANET. While conducting research it is important to ensure

that the select methods align with the objective of the study. This research adopted two research

methods in accordance with the research objectives described in Chapter 1. The first method is

the Experimental method. This method was the most appropriate for evaluating different ML

algorithms as it provides quantitative properties which can be processed and analysed. This

also make it easier to compare the ML performance for suitability in intrusion detection tasks.

The second method selected was the Design Science (DS) methodology. DS was adopted

because it offers an important paradigm for conducting applicable and yet rigorous research.

This approach allow the development, implementation and evaluation of a proposed system. In

this study, DS research methods were used to facilitate the development and evaluation of the

proposed IDS model for tactical networks. In the following Subsections, how the two selected

methods will be used in this study is described.

3.2.1. Experimental Method

This study aims to design a Machine Learning-based IDS for SDN-based tactical MANETs.

Machine Learning (ML) techniques have demonstrated applicability in solving intrusion

detection problems. Due to a large number of available ML algorithms, it remains unclear

which algorithms are suitable for intrusion detection. Hence, it is important to investigate and

find a better-performing machine learning algorithm that can be adopted for classifying

network traffic as normal or malicious. In this study, performance evaluation of ML

classification algorithms is required in order to identify the most suitable machine learning

technique for intrusion detection in tactical MANETs. Considering this objective, the

experimental method stands out as the best-fitting option.

3.2.2. Design Science Method

To accomplish the goal and objectives of this study, the Design Science methodology was

adopted. Design Science was suitable because this work intends to develop a model, therefore

DS was a natural choice. DS provides the researcher with an overarching, guiding framework

for addressing a complex problem since it involves a rigorous process to design an artefact to

solve observed problems, to make research contributions, to evaluate the designs, and to

communicate the results to the appropriate audiences (Peffers, Tuunanen, Rothenberger, &

36

Chatterjee, 2007). To ensure that all the DS criteria are met, seven guidelines were presented

by Hevner et al. (2004). This study applied these guidelines as depicted in Figure 3.2.

Figure 3.2. Application of Design Science guidelines and research processes

3.2.3. Data Science Method

In Design Science, the produced artefact should be a product of rigorous methods (Hevner et

al., 2004). In this study, the data science methodology, also known as the data science life-

cycle shown in Figure 3.3, was used to facilitate the construction of the machine learning

classification models used to classify network flow data in the proposed IDS. The data science

method was chosen because the study seeks to address a data science problem. However, it was

used as a sub-method under the DS methodology.

37

Figure 3.3 Data Science work cycle (Zumel and Mount, 2014)

The data science methodology is composed of different steps that need to be executed to ensure

the delivery of an effective Machine Learning predictive or classification model. The steps

involved are presented below;

1. Defining the goal

Defining the goal of the project forms the most important phase in any project. It is important

to define a quantifiable and measurable goal. This phase is concerned with defining state-of-

the-art methods used to solve the problem and limitations in the applied methods.

2. Collecting and Managing Data

After defining the goal of the project, the next important phase is data collection. The data

collection encompasses the identification of the required data, exploring it, and preparing it to

be appropriate for analysis. Reports suggest that this step is the most time-consuming over the

other processes. In order to achieve our goal, network data is required for building a classifier

capable of classifying normal and malicious activities. in this study network flow data is used

for intrusion detection. As mentioned in the previous sections, monitoring network flow data

for intrusion detection tends to be more effective than the analysis of complete network packets

due to a number of reasons. the network flow data can take two possible labels: Normal and

malicious. Labelling of the data is important for classifying and learning the different

characteristics of each flow type.

38

3. Build Model

This stage employs statistics and Machine Learning for modelling, this is where useful insights

from the data are extracted to achieve our goal. Usually, there is an overlap and back-and-forth

between this modelling stage and the data cleaning stage. This is due to trying to find the best

form and way to represent the data to model so it can produce better results.

4. Evaluate and Critique Model

At this stage, we have a model, yet it is time to determine if it meets our goal. The important

questions to consider are:

1. Is the model precise and sufficient for our needs? Does it generalise well?

2. Does the model perform better than random guessing? Is it better than the method

currently in use?

3. Do the obtained results make sense from the perspective of the investigated problem

domain?

It is important that one answers yes to all these questions. If not, one should loop back to the

modelling step or decide which of the different data attributes to check and choose more

appropriate attributes. To evaluate our classifier the evaluation metrics presented in Subsection

3.2.4 and the confusion matrix, which tabulates the actual classifications against the predicted

classifications, were used.

5. Present Results

After a back-and-forth loop of model development and evaluation is completed, and the

envisioned model is realised, then the documentation of the model is conducted. Such

documentation is dedicated to helping those who will deploy the model, hence be liable for

using, running, and maintaining the model. Basically, the important things to document are

how the model detects network intrusions, and how the end-users will use the model to achieve

secure networks.

6. Deploy Model

The last stage of the cycle is putting the model into operation. This study implements the

intrusion detection model in a wireless SDN-based tactical network, upon deployment,

evaluating the effectiveness of the model using evaluation metrics presented in the next section.

39

3.2.4. Evaluation Metrics

Evaluation metrics allow one to evaluate and validate prediction or classification models. The

objective is usually to determine how well a model performs in terms of classification or

predicting a particular variable. The most common evaluation metric used to validate

classification models is Accuracy. Accuracy is defined as the proportion or ratio of correct

predictions among the total number of predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑝

𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Where 𝑇𝑝 is the true predictions for each class, N is the total number of predictions. While

accuracy can be a useful metric for ML model validation, in some cases it has its limitations

(Boutaba et al., 2018). This issue is known as the “Accuracy Paradox”. The Accuracy Paradox

states that a “predictive model with a given level of accuracy may have greater predictive power

than models with high accuracy”.

Another important measure to be considered for model performance evaluation is the model's

capabilities in identifying positive cases. This metric is known as the True Positive Rate (TPR)

or Recall and is defined as the number of true positives divided by the number of true positives

plus the number of false negatives.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Where true positives (TP) are the positive data points predicted as positive by the model and

false negative are the data points the model identified as negative that are actually positive.

Recall can also be regarded as the model’s ability to find all the data points of interest in a

dataset.

The Precision, which is defined by the number of true positives divided by the number of true

positives plus the number of false-positives, will also be used.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision can be considered as a measure of the ability of the classification model to identify

only the relevant data points. While Recall measures the ability to find all relevant instances in

the dataset, Precision expresses the proportion of the data points regarded by the model as

40

relevant that are actually relevant, the F1 score defines the harmonic mean of both Precision

and Recall, with the equation:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Another important technique for evaluating a classification model is the Receiver Operating

Characteristics (ROC) curve. The ROC curve plots the true positive rate (TPR) on the y-axis

and the FPR on the x-axis, where the TPR is the recall, and FPR is the probability of false

detection. However, since the ROC curve aids in visual analysis, it can be quantified by

calculating the total Area Under the Curve (AUC). AUC is a metric that falls between 0 and 1

and is defined as the measure of the probability of confidence in the model to accurately predict

positive outcomes for positive instances. The presented evaluation metrics are used to measure

the effectiveness of the proposed IDS technique.

3.3. Summary

To achieve the aim of this study, the Design Science (DS) and Experimentation research

methodologies were used. DS was used because it necessitates the application of rigorous

methods in both the construction and evaluation of the designed artefact (Hevner et al., 2004).

This chapter presented an overview of different IS/CS research methodologies and the most

applicable methods to this research were selected and further described. Thus, the study utilised

the Design Science (DS) and Experimentation methods. The DS methodology was chosen

because it provides guidelines to facilitate an artefact construction and evaluation in addressing

an important business or organisation problem. In addition, the Experimentation method was

selected due to the nature of the evaluation approach used to evaluate NIDS. Moreover, because

the solution proposed in this study uses ML techniques, the Data Science project life-cycle

process was adopted to facilitate the development and evaluation of the ML classification

models used in the proposed IDS. Finally, the chapter presented the evaluation metrics that will

be used to evaluate the efficiency of ML algorithms and the IDS proposed in this study.

41

Chapter 4: Performance Evaluation of ML

Techniques for ID

Although ML techniques have been around for a long time, finding a way to use them

efficiently and in real-time is a new trend (Zaman, 2018). Recent approaches in intrusion

detection have applied Machine Learning to improve detection rates (Buczak and Guven, 2016)

(Vijayanand, Devaraj and Kannapiran, 2018) (Dunning and Friedman, 2014). However, due to

the large number of available ML algorithms, it remains unclear which algorithms are suitable

for intrusion detection.

In that regard, this chapter explores and conducts a performance evaluation of different ML

algorithms for the task of intrusion detection to find the better-performing in terms of detection

rate and detection speed. Hence, this chapter addresses the second research objective, which is

to find the most suitable ML method for intrusion detection in tactical networks. The first

section presents the evaluation datasets used to carry out the experiments. To ensure that the

results are accurate and usable, recent datasets such as UNSW-NB15 and CIDDS-001 were

used instead of the KDD-CUP benchmark dataset. The choice of datasets was influenced by

the number of issues and limitations of the KDD-CUP dataset presented by other researchers

(Gogoi, Bhuyan and Bhattacharyya, 2012) (Moustafa, Slay and Technology, 2015). Section

4.2 presents the experimentation and performance evaluation of popular supervised ML

algorithms in intrusion detection tasks. The first experiment uses packet-based datasets while

the second experiment uses flow-based datasets, this is important to determine which technique

yields better performance in packet and flow-based data. The result analysis (Section 4.3)

indicates that ML algorithms perform better in flow-based data, achieving minimum model

build and test time. In addition, it was also observed that ensemble learning techniques using

Decision Tree as their base methods perform better than methods utilising probabilistic and

non-probabilistic techniques. Finally, the concluding remarks are presented in the last section

(Section 4.4).

4.1 Evaluation Datasets

ML techniques require data to train and test their efficiency. All algorithms used in this work

are supervised Machine Learning algorithms, which means they do not only require data but

42

data that is labelled. The most dominant among them is the KDDCUP99 dataset. The

KDDCUP99 is a derivative of the DARPA98 network traffic dataset, which is a popular

benchmark dataset used in the International Knowledge Discovery in Databases (KDD)

competition.

From literature, the most used datasets for evaluating IDS performance are the benchmark

network intrusion KDD-CP 99 and NSL-KDD datasets (Ertam, Õ, and Yaman, 2017), (Revathi

and Malathi, 2013), (Haq, Onik and Shah, 2015). Those datasets originate from the Lincoln

laboratories at MIT University. However, recent studies perceived that using those datasets does

not reflect realistic output performance. The works of (Gogoi, Bhuyan and Bhattacharyya, 2012)

and (vasudevan2011ssenet) argued that the KDD-CP 99 datasets contain a large number of

redundant records in the training set. There are also reports of multiple missing records which

are a factor in changing the nature of the data. In addition, in the NSL-KDD datasets which are

an improved version of the KDD-CP 99 dataset, (Moustafa, Slay, and Technology, 2015)

claimed that the datasets do not comprehensively represent a modern low footprint environment.

Recently, other datasets have been proposed as a benchmark dataset for IDS evaluation (Markus

Ring et al., 2017) (Gogoi, Bhuyan and Bhattacharyya, 2012). These datasets ameliorate the

shortcomings of KDD-CP 99 datasets because they represent modern network behaviours. In

(Moustafa, Slay and Technology, 2015) the UNSW-NB15 network intrusion detection dataset

is proposed. The UNSW-BN15 network dataset is a hybrid of modern normal and abnormal

network traffic created using the IXIA PerfectStorm tool at the Cyber range lab of the Australian

Centre for Cyber Security (ACCS). The UNSW-NB15 network dataset is made up of nine

different families of attack instances. In (Markus Ring et al., 2017) the authors proposed the

CIDDS-001 dataset which is a labelled flow-based dataset containing unidirectional NetFlow

data (Verma and Ranga, 2018). The dataset consists of data extracted from an OpenStack

environment with internal servers and an external server that is deployed on the internet to

capture real and up-to-date traffic.

In this study, the UNSW-NB15 and CIDDS-001 datasets were used to evaluate and determine

the better performing ML algorithm. The UNSW-NB15 dataset was used since it is one of the

most recent packet-based datasets, containing a broad range of network packet attributes. To

evaluate flow-based prediction on the algorithms, the CIDDS-001 dataset was also used as it is

recent, easily accessible, and contains a range of attacks.

43

4.1.1. UNSW-NB15 Dataset (Moustafa, Slay

and Technology, 2015)

The UNSW-NB15 dataset is a fairly recent packet-based dataset that contains a hybrid of real

modern normal and synthetical abnormal network traffic from a synthetical environment at the

UNSW cybersecurity lab. The UNSW-NB15 dataset represents nine major families of attacks

achieved by utilising the IXIA PerfectStorm tool. It contains 49 features that were developed

using Argus and Bro-IDS tools and twelve algorithms that cover characteristics of network

traffic. The dataset was adopted because it reflects modern traffic patterns since it was generated

more recently when compared to the benchmark dataset, KDD-CUP 99., the UNSW-NB15

network dataset distribution is presented in Table 4.1. see (Moustafa, Slay and Technology,

2015).

Table 4.1. UNSW-BN15 network dataset distribution

Type
Number of Instances

Training Testing

Normal 37 000 56 000

Fuzzers 6 062 18 184

Backdoors 583 1 746

Analysis 677 2 000

DoS 4 089 12 264

Exploits 11 132 33 393

Generic 18 871 40 000

Reconnaissance 3 496 10 491

Shellcode 378 1 133

Worms 44 130

Total 82 332 175 341

4.1.2. CIDDS-001 Dataset (M Ring et al.,

2017)

The CIDDS-001 dataset is a labelled flow-based dataset generated by emulating a small

business environment in the OpenStack Software platform and capturing the generated network

traffic of virtual machines in unidirectional NetFlow format over a period of 4 weeks. The

Network flow traffic was recorded in flow-based format instead of packet-based format to

44

bypass the problem of encrypted connections. The normal traffic was generated by executing

Python scripts on the clients which follow some self-defined guidelines, while the malicious

traffic was generated by explicitly executing Ping-scans, Port-scans, Brute-force, and DoS

attacks within the OpenStack environment. Other malicious traffic was captured from a server

that was exposed to real and up-to-date attacks from the internet. containing unidirectional

NetFlow data (Verma and Ranga, 2018). Table 4.2. presents the overview of attacks within a

specific week within the CIDDS-001 dataset.

Table 4.2 Overview of attacks within the CIDDS-001 Dataset (Markus Ring et al., 2017)

OpenStack External Server

 PortScan PingScan DoS BruteForc PortScan PingScan DoS BruteForc

Week

1

16 10 11 5 0 0 0 0

Week

2

8 6 7 7 2 0 0 4

Week

3

0 0 0 0 5 0 0 7

Week

4

0 0 0 0 1 0 0 3

4.2. ML Techniques Performance Evaluation

This section presents a performance analysis of different ML techniques to determine the most

effective in terms of its ability to find all the data points of interest and its ability to identify

only the relevant data point in the dataset.

4.2.1. ML Classifiers in Packet-based dataset

Classification is defined as a simple task in data analysis and pattern recognition that

necessitates the creation of a classifier, which is, a function that assigns a class label to instances

described by a set of attributes (Friedman et al, 1997). In the experiment, seven machine

learning classifiers are considered. Multi-Layer Perceptron, Bayesian Network, Support Vector

Machine (SMO), AdaBoost, Random Forest, Bootstrap Aggregation, and Decision Tree (J48).

To conduct a performance analysis of the classification algorithms, WEKA version 3.8 was

installed on a Windows 10, Intel(R) Core i7-6700 CPU @ 3.40GHz machine, with 8 GB RAM.

The dataset used for the evaluation is the UNW-NB15 network dataset proposed by (Moustafa,

Slay and Technology, 2015). The classifiers are used to train intrusion detection models using

a training set with 82,332 instances and tested using 175,341 unknown instances. The dataset is

45

loaded to the WEKA tool. Data pre-processing is used to restructure and remove features that

may cause overfitting or no information gain. The training and testing sets contain 45 attributes

each, which include two types of labels; original Class labels such as 0 for normal and 1 for

abnormal and attack_Category labels where each abnormal instance is labelled based on attack

type, see Table 4.1. Thus, in this experiment, we use pre-processing tools to remove the

attack_Category label and the instance ID to avoid data overfitting. Therefore, we remain with

43 attributes with 0 and 1 as our labels in our final evaluation dataset. The experiment was

repeated 6 times for each classifier, and the average was used to ensure consistency.

4.2.2. Results

Table 4.3. presents the True Positive Rate (TPR), False-Positive Rate (FPR), and Area Under

ROC Curve (AUC) of each classifier model using two-class labels (Normal and Attack). It is

important to note that the higher the TPR, the fewer positive data points missed. Therefore,

classifiers that achieve higher TPR are preferred over the ones that generate lower TPR. From

the results above, MLP, AdaBoost, Random Forest, and Bagging generated higher TPR. For

intrusion detection in TWN, a classifier with high TPR is required so as to correctly classify

malicious traffic in the network. From Table 4.3 we observe that multilayer perceptron missed

fewer positive data points, achieving TPR of 0,933. The second is AdaBoost with 0,903, random

forest at 0,902 and bootstrap aggregation at 0,901. The remainder of the classifiers achieved

TPR of less than 90 %.

Table 4.3. Classifier TPR, FPR, AUC

Classifier
Experimentation values

TPR FPR AUC

Multilayer-Perceptron 0.933 0.142 0.951

AdaBoost 0.903 0.087 0.968

Random Forest 0.902 0.057 0.981

Bagging 0.901 0.057 0.952

J48 0.887 0.069 0.952

SMO 0.882 0.073 0.905

Bayesian Network 0.809 0.123 0.965

46

The second important performance metric is the FPR. A higher FPR indicates that more negative

data points are misclassified by the classifier. Multilayer perceptron has higher FPR followed

by the Bayesian Network, this demonstrates that those two classifiers can produce more false-

positive predictions than the other classifiers. Therefore, using those classifiers for intrusion

detection in TWN is not recommended. For example, consider a dataset with two classes,

positive and negative. If the data has one category overwhelming the majority of the data points,

then the data is skewed class-wise. In this case, the data is imbalanced as one class has many

data points from the other. Thus, accuracy is not reliable in such cases because if a dataset has

15 positive points and 5 negative points, correctly predicting all the positive points and failing

to correctly predict any negative point yields accuracy of 75%. In this case, accuracy is not a

good measure to assess model performance. This issue is usually referred to as the Accuracy

Paradox.

When we consider the FPR, Multilayer Perceptron has a higher FPR followed by the Bayesian

Network, with 0.142 and 0.123 respectively. We observe that the other classifiers have an FPR

of less than 0,1. AUC is one of the most important metrics to measure classifier performance.

The last detection metric that can be used to measure detection performance is the AUC. As

observed in the above subsection, Bootstrap, random forest, and AdaBoost achieved higher

AUC. Hence these classifiers are suitable for implementation for intrusion detection. While TPR

and FPR are important, it is important to consider the AUC as the best measure for selecting an

ML classifier for TWN. Table 4.3 shows that all the models achieved AUC above 0.9. However,

Bootstrap aggregation has the highest AUC (0.986), followed by Random forest at 0.981, and

AdaBoost at 0.968.

The time for training a model is an essential factor due to the ever-changing cyber-attack types

and features. Hence, anomaly detectors need to be trained frequently or incrementally, with

fresh malware signature updates.. Multilayer-Perceptron (MLP) took longer to build the model,

followed by SMO. MLP took about 24 hours to train, followed by SMO with an average of 9

minutes. Random forest and Bootstrap Aggregation with a build time of 28,68 sec and 18,86

secs follow. The remainder of the list is all bellow 10 seconds, as shown in Table 4.4.

Table 4.4 Classifier Build and Test time in seconds

Classifier
Time in seconds

Build (sec) Test (sec)

Multilayer-Perceptron 86303.22 14.35

47

Classifier
Time in seconds

Build (sec) Test (sec)

AdaBoost 9.02 1.06

Random Forest 28.68 4.91

Bagging 18.86 1.19

J48 8.08 1.02

SMO 541.88 1.44

Bayesian Network 2.56 1.63

When we consider test time, the Multilayer Perceptron takes more time, 14,35 seconds, followed

by random forest, 4,91 secs. The remainder of the algorithms were able to test their models in

below 2 secs, shown in Table 4.4.

On the other hand, the time to classify a new instance is an important factor that reflects the

reaction time and the packet processing power of the intrusion detection system. Hence from

the results, we observe that MLP can present challenges for real-time intrusion detection in

TWN. This is due to a large amount of time required to build and test the MLP classifier.

From the obtained results, Random Forest, Bagging, AdaBoost, and J48 are the best performers

in terms of TPR, FPR, and AUC. It should be noted that 3 of these classifiers are ensemble

classifiers. In Addition, AdaBoost, Bagging, J48, and Bayesian Network classifiers, are much

faster in building and testing their model.

4.2.3. ML Classifiers in Flow-based dataset

This subsection presents a performance evaluation of ensemble learning methods using flow-

based data. This is because ensemble Machine Learning methods have distinguished

themselves as exceptional detectors of malicious and anomalous actions in intrusion detection

in both computer systems and networks. Ensemble methods demonstrated better performance

when compared to single and hybrid ML methods in terms of detection accuracy, as observed

from the performance analysis conducted in the previous subsection. Thus, three representative

learning methods that are widely used for classification problems are used as the base machine

learning methods for the ensemble methods. The base methods utilised are; Decision Tree

(DT), Support Vector Machine (SVM), and Naïve Bayes (NB).

48

The experiment is conducted on a 1.80GHz Intel (R) Core i7 processor with 8 GB RAM.

Python 2.7 and Scikit-learn version 0.20 installed on Ubuntu 16.04 mate Operating system.

The performance analysis is conducted using the CIDDS-001 flow-based network intrusion

detection datasets (Markus Ring et al., 2017). The dataset consists of 14 attributes, where 1-10

are the NetFlow default attributes, and attributes 11 – 14 are attributes added during the

labelling process. This study utilised 11 attributes for the ensemble learning evaluation since

those attributes can be sampled from any simulation tool with ease. Also, only week 1 of the

dataset (see Table 4.2) was used since it contained more attacks than the other weeks. CIDDS-

001 dataset attributes shown in Table 4.5.

Table 4.5 CIDDS-001 network intrusion datasets attributes

No Attributes Attribute Description Subhead

1 Src_IP_Addr Source IP address

2 Dst_IP_Addr Destination IP address

3 Src_port Source port

4 Dst_port Destination port

5 Proto Transport protocol

6 Date_first_seen Start time flow first seen

7 Duration Duration of flow

8 Bytes Number of transmitted bytes

9 Packets Number of transmitted packets

10 Flags OR concatenation of all TCP flags

11 Class Class label

12 Attack_type Type of attack

13 AttackID Same attack class carry same attack id

14 Attack_description Additional information about attack parameters

4.2.4. Results

Table 4.6 shows the measures of the base classifiers and when used in the ensemble methods.

The better-performing classifier in terms of detection accuracy is the Decision Tree (DT)

classifier and random forest (RF) classifier, with an accuracy of 99.09 % and 99.14 %

respectively. The probabilistic algorithm, Naïve Bayes (NB), obtained the worst performance,

49

with an accuracy of 60.56 %. Majority voting performed slightly better than SVC, with an

accuracy of 63.44 %. While considering the base classifiers in terms of accuracy, the DT-based

classification method demonstrates better performance when compared to the other methods.

Table 4.6. Evaluation results for ensemble learning techniques

No
Algorithm

Performance of ML

Accuracy Precision Recall f-score

1 DecisionTree 99.09 % 0.99 0.99 0.99

2 NaiveBayes 60.56 % 0.47 0.61 0.48

3 SVC 62.89 % 0.75 0.63 0.49

4 Bagging(DT) 99.08 % 0.99 0.99 0.99

5 Bagging (NB) 60.57 % 0.47 0.61 0.48

6 Bagging (SVC) 62.89 % 0.75 0.63 0.49

7 AdaBoost (DT) 99.15 % 0.99 0.99 0.99

8 AdaBoost (NB) 70.74 % 0.84 0.71 0.75

9 AdaBoost (SVC) 62.35 % 0.39 0.62 0.48

10 RandomForest 99.14 % 0.99 0.99 0.99

11 MajoritytVoting 63.44 % 0.76 0.63 0.50

The three base classifiers; DT, NB, and SVC were utilised to construct the bootstrap

aggregation (Bagging) ensemble learning method, a bar graph representing their performance

is shown in Figure 4.1.

50

Figure 4.1 Base method accuracy

In Figure 4.2, a bar graph representing Bagging (DT), Bagging (NB), and Bagging (SVC).

From the figure, it is clear that Bagging (DT) outperforms the other two ensemble methods in

terms of detection accuracy. Bagging (SVC) performs slightly better than Bagging (NB)

Figure 4.2 Bagging DT, NB, and SVC accuracy

In terms of AdaBoost ensemble learning the three base classifiers were implemented as

AdaBoost (DT), AdaBoost (NB), and AdaBoost (SVC), as shown in Figure 4.3. The results

indicate that methods utilising the Decision Tree algorithm tend to have better detection

accuracy, such as 99 % accuracy obtained by AdaBoost (DT). AdaBoost (NB) outperforms

AdaBoost (SVC) with accuracy of 70.74% over AdaBoost (SVC) accuracy less than 64 %.

51

Figure 4.3 AdaBoost (DT), (NB), (SVC) accuracy

The results obtained from ensemble learning also show that Decision Tree-based classification

methods before better than probabilistic and non-probabilistic methods. Non-probabilistic

achieve slightly better results than the probabilistic-based classification method. In both

Experiments, ensemble learning techniques demonstrated high detection rates and high AUC.

Among the ensembles, the highest accuracy was obtained by Random Forest and AdaBoost

with Decision Tree as the based learner. Figure 4.4 illustrates the ROC curve of different

ensemble methods, namely: Random Forest (RF), Decision Tree (DT), gradient boosting, and

AdaBoost. The methods obtained ROC values above 90 % which indicate that ensemble

methods are powerful and can help detect network anomalies and for intrusion detection.

52

Figure 4.4 Ensemble learning techniques ROC Curve Plot

As presented by Figure 4.5, a closer look at the ROC curve illustrates that AdaBoost and

Random Forest outperform the other methods by obtaining higher AUC values.

Figure 4.5 Zoomed image of Figure 4.4

Below the results for time taken for testing and bulding the machine learning models is

discussed.

53

Decision Tree (DT) based methods: Methods utilising the Decision Tree algorithm tend to

have better detection accuracy and demonstrate better performance in terms of correctly

classifying malicious flows. On the other hand, DT methods take the least time when both

building and testing their models. DT approaches outperform both probabilistic and non-

probabilistic approaches. See Figure 4.6 below.

Figure 4.6 Classifier build and test time

Probabilistic (Naïve Bayes) based methods: Methods utilising NB demonstrated the worst

performance in terms of detecting malicious flows. However, the time to train and test the model

is much more reasonable than for the non-probabilistic approach utilising SVC.

Non-probabilistic (SVC) based methods: The results indicate that methods associated with

Support Vector Machines perform better than probabilistic approaches in terms of flow

classification. In addition, it takes longer to build and to test them, hence they are the worst

methods to employ when the time is a critical issue.

4.3. Result Analysis

A summary of the results obtained from both experiments is illustrated in Figure 4.7. where

the red bar indicates the accuracy of a classifier in packet-based datasets, and the blue bar the

accuracy in flow-based datasets. From the Figure, it is apparent the algorithms obtained higher

54

accuracy in the flow-based datasets. This is because flow data contains a minimum number of

feature attributes compared to packet-based datasets. This means they are more lightweight for

processing which fulfils the desired goal of efficiency in processing power and storage.

Figure 4.7 Packet and flow-based machine learning classifier performance

The time each model takes to learn from the data, and the time it takes to classify an instance

are very important metrics to consider in fast-changing networks with real-time security

requirements. Flow-based data analysis using ensemble learning methods demonstrated fast

performances in build and test time, Figure 4.8, and Figure 4.9. In addition, random Forest and

AdaBoost have less build time in flow-based data compared to the Bagging ensemble classifier.

55

Figure 4.8 Model build time for packet and flow-based data

Figure 4.9 Model test time in packet and flow-based data

Conversely, when we consider the test time, presented in Figure 4.9, which is the amount of

time taken by the method to classify new instances, Random Forest and AdaBoost ensemble

techniques demonstrated better performance. Both the better identified best performing

models, that is, AdaBoost and Random Forest were further implemented for classifying

network data in a simulated SDN based tactical mobile network (presented in Chapter 7).

56

4.4. Concluding Remarks

To develop an IDS using Machine Learning, an ML algorithm capable of detection totality and

allowed to train and retrain in a minimal amount of time is ideal. In this chapter, a performance

evaluation of different machine learning methods was conducted. Our approach evaluated the

algorithms using two datasets, namely: 1) the UNSW-NB15 network datasets, which are

packet-based, and 2) the CIDDS-001 flow-based datasets. The packet-based evaluation

approach indicated that Decision Tree-based methods outperformed the probabilistic and non-

probabilistic techniques in terms of accuracy, False-positives, and AUC. Taking into

consideration the model build time, the AdaBoost using Decision Tree demonstrated better

performance, while Random Forest performed worst in test time.

The flow-based evaluation implemented Decision Tree (DT), probabilistic (Naïve Bayes), and

non-probabilistic (Support Vector Classifier) methods using Bagging and AdaBoost ensemble

methods. The results obtained indicated that DT-based methods also performed better for flow-

based intrusion detection systems. They performed better in terms of Accuracy, Precision,

Recall, and F-Score. The time taken by the Decision Tree algorithm to build and test a model

was also reasonably small when compared with the probabilistic and non-probabilistic

methods.

From the experiments, we observed that ensemble learning-based techniques performed better

than single ML techniques. Comparison of the ensemble techniques, the Random Forest, and

AdaBoost ensemble methods with Decision Tree as the base estimator demonstrated suitability

for intrusion detection in both the flow-based and packet-based network datasets.

This chapter demonstrated that better results can be obtained when using a flow-based dataset,

hence making them a suitable choice for IDS in TWN. The next chapter provides the proposed

SDN enabled flow-based IDS.

57

Chapter 5: Software-Defined Flow-based

Intrusion Detection System (SFIDS)

The brief description of tactical networks and their limitations provided in Chapter 2 indicate

that there is a need for an innovative networking paradigm for tactical network scenarios.

Currently, Software Defined Networks (SDN) can provide many benefits such as network

global view, programmability, and centralised control and management. Those capabilities can

be used to enhance tactical networks’ limitations, for example, network global view can be

used for data collection which presents the opportunity for better analysis of the network traffic

in a tactical network for intrusion detection. In addition, due to the velocity, variety, and volume

of the flow-data that can be acquired, big data methods can be used to power data-driven

applications dedicated to different aspects of the network, including security solutions and IDS

(Fahad, Sher and Bi, 2017). This Chapter proposes a Software-defined Flow-based Intrusion

Detection System (SFIDS) model that uses SDN for data collection and ML techniques for

intrusion detection.

The presented SFIDS method is directly driven by the high and growing demand for network

security in tactical networks as existing solutions experience challenges due to the hostile

environment, limited power budget, and lack of centralised control and management units

where security services and mitigation strategies can be provisioned on demand. The core

components of the SFIDS include packet observation, flow metering and exporting, data

collection and preparation, finally data analysis. These components utilise the SDN architecture

to fulfil their respective tasks. For example, packet observation, metering, and data exportation

are handled in the SDN data layer. Data collection and preparation is handled by a centralised

collector residing in the SDN control layer. The ML models (Classifiers) are then developed

into SDN applications taking prepared data from the collector as input to analyse and classify

each data instance as either malicious or normal.

5.1. Design Criteria

This study proposes a Software-defined Flow-based IDS (SFIDS) that uses Machine Learning

(ML) techniques to address the high demand for network security in military tactical networks.

The motivation for this approach is the demand for an intrusion detection technique that can

precisely detect hostile nodes in a hostile environment (Pawgasame and Wipusitwarakun,

58

2015). In addition, because tactical network nodes have low processing and power budgets, a

light-weight mechanism that can achieve a high detection rate using minimum network

resources is required. The proposed approach adopts the SDN paradigm for data acquisition,

network global view, and real-time data analysis without compromising network lifetime and

network resources. The approach can be extended to support incident handling and

containment, which is regarded as important after network intrusions are detected. This section

presents the design criteria or functional requirements of the proposed system. Based on

(Metcalf and Lapadula, 2000), the functional requirements necessary for intrusion detection

systems in a military context include; collecting, processing, analysing, reporting, warning,

displaying, controlling, reacting, storing, and interacting. In that regard, the design criteria that

were laid out for the SFIDS to meet these functional requirements are as follows:

 The framework must be able to acquire or sample network flow-stats data in real-time. This

can be achieved by using SDN and network flow sampling tools, such as sFlow, where a

network flow is sampled by a sampling agent embedded in the SDN forwarding devices.

Each network forwarding device samples flow-stat information and sends it to a logically

centralised collector for processing and analysis.

 The process of data gathering should be lightweight so as to not affect network processes,

functions, and lifetime. The framework should be able to gather network flow stats while

using minimal or limited network resources.

 The framework must be able to perform reduction and pre-processing of sampled flow data

for classification. This forms one of the most important features of the framework, as all

the acquired data needs to be processed and presented in a specific format which will allow

the Machine Learning algorithm to effortlessly learn and detect any anomalies.

 The framework must be able to classify network flow instances as normal or malicious with

high detection rates and recognition totality. Hence, it must be able to achieve high

detection accuracy with low or no false-positive rates. This will be achieved by using

Machine Learning techniques with high detection rates such as ensemble learning

techniques, as established in Chapter 4. Each flow instance is sent to the ML model for

classification and labelling as normal or malicious.

 The framework should be able to generate timeless alerts if a malicious flow is detected.

Generating alerts will help network administrators to react fast in terms of incident handling

and incident containment. This can be done by deploying an SDN application on the

59

controller that can directly update flow table rules in the forwarding devices to block, drop

or forward malicious traffic to a sandbox to monitor the malicious node.

 The alerts generated by the framework must be easy to understand and implemented so that

it does not overload the operator and system.

 The alerts generated by the framework must be exportable to data visualisation frameworks,

such as the ELK stack and databases for long term storage. Each alert must be accompanied

by the malicious node’s information such as MAC address, IP addresses, and protocol for

effortless analysis.

5.2. SFIDS Model Architecture

This section presents the proposed Software-defined Flow-based Intrusion Detection System

(SFIDS) design. Design Science propounds that artefacts have both inner and outer

environments. The inner environment deals with components that make up the artefact. While

the outer environment refers to forces external to the artefact (Michalos and Simon, 1970). This

section describes the SFIDS model and its components as applicable in a tactical network

scenario.

In this research, we proposed an intrusion detection system (SFIDS) which uses network flow

data to detect anomalies, Figure 5.1. In general, SFIDS employs network flow sampling

techniques to acquire network flow data from the tactical network devices and ML techniques

to analyse the flow data and generate alerts if intrusive flows are detected. SFIDS is made up

of four essential components, namely; Packet Observation component, Flow Metering and

Export component, Data Collection component, and Data Analysis component.

60

Figure 5.1 Proposed Software-defined Flow-based Intrusion Detection System (Zwane, Tarwireyi and Adigun,

2019a)

5.2.1. Packet Observation

The first step in the proposed model is packet capture which is carried out by a Network

Interface Card (NIC) in the network devices. Each network device is embedded with a flow-

sampling agent. During this stage, packets pass several checks, which include checksum error

checks. The packet is then timestamped, which is important for processing functions and

analysis application. After packet capture and timestamping, packet truncation is applied to

reduce the volume of data received and handled by the capture application. The last step

involves packet sampling and filtering. Sampling is applied to reduce the load for subsequent

stages and to moderate the consumption of bandwidth, memory, and computation cycles.

Similarly, filtering is used to lessen the amount of data to be processed at later stages.

5.2.2. Flow Metering and Export

During this stage, packets are aggregated into flow records. The flow records are then exported.

Packet aggregation is accomplished through a metering process which is based on Information

Elements (IE) that define the layout of flows. IE are fields that can be exported in flow records,

61

for example, flow attributes, such as an IP address. After the metering process flow record

sampling and filtering functions are performed. In contrast to packet sampling and filtering

performed in the packet observation stage, flow sampling and filtering work on flow records

instead of packets. Flow records are packaged into a specific message format depending on the

protocol used. For example, the IPFIX message format or NetFlow format. After constructing

the message, it is then exported to the logically centralised flow collector. The most

implemented and deployed transport protocol for exporting such flows is UDP (Hofstede et al.,

2014).

5.2.3. Data Collection and Preparation

Flow records are exported to a logically centralised flow collector, which receives, stores, and

pre-processes flow data from one or more flow exporters in the network. The flow collector

conducts feature extraction which includes the task of picking the optimal features that will be

used by the model to successfully classify the records. Data pre-processing is the process of

converting flow records into a specific format that is acceptable to the detection algorithm used.

This phase can include data cleaning, fixing missing values, data encoding, and normalisation.

In this component, all the features of each flow record from the data collector are encoded and

scaled. This allows the data analysis to be consistent while using less processing power, as

required in power-constrained environments. Finally, the Collector exports the data for storage

and for pre-processing, see Figure 5.1 above.

5.2.4. Data Analysis

At this stage, the results of all the previous stages come together. In the data analysis stage

different data analysis methods can be applied, for example, flow analysis and reporting, threat

detection, and performance monitoring (Hofstede et al., 2014). The task of intrusion detection

is considered a classification problem since the goal is to classify network data as normal or

malicious. One way to achieve this is by directly predicting the qualitative response for the

observations (James, 2014). Since the task at hand requires the analysis and prediction of data

instances, it can be regarded as a data science problem.

However, from the experiments conducted in Chapter 3, we have observed that Decision Tree-

based methods usually outperformed both probabilistic and non-probabilistic methods in terms

of detection accuracy, model build, and test time. In other cases, Machine Learning models can

yield unsatisfactory results due to a number of issues, for example, a single ML method is only

62

capable of learning only some parts of patterns in the data. Thus, by suitably combining

multiple learning techniques, such as every single learner being trained using a subset of the

data, and their predictions being combined using an ensemble method for the final prediction,

high detection rates can be achieved. This ensemble approach is presented in Figure 5.2.

Figure 5.2. Generalized procedure for creating an Ensemble or a Meta- Model

To improve the classification accuracy, this research proposes combining single ML algorithms

to build an ensemble model. This approach requires that two conditions are met (Illy et al.,

2019);

 The first condition requires that we have base learners or learning algorithms that perform

better than random guessing or are reasonably accurate in their domain of proficiency. In

this study, the Decision Tree classifier is used as the base learner.

 The second condition defines how to combine the output of several base estimators to

produce the final result. The methods of combining the base methods’ results are divided

into multi-expert and multistage combinations (Illy et al., 2019). During a multi-expert

combination, the base estimators work in parallel, and all of the selected outputs are used

to generate the final result. For example, the Majority Voting and Bagging methods used a

multi-expert combination. Conversely, the multistage combination employs a serial

approach where each supplementary learner works on the limitation of the previous base

learners, such as, trained or tested only on the instances that previous base learners were

not capable of achieving satisfactory accuracy. Boosting is an example of a multistage

combination.

63

Additionally, this stage can log all the instances and decisions taken into a log file. Such log

files can be exported to a Log Management and Analysis tool to further analyse and visualise

generated alerts.

As mentioned, the SFIDS adopts Machine Learning classification techniques to analyse and

classify the network flow instances as normal or malicious. The algorithm shown in Figure 5.2

illustrates the steps adopted to create the ML classification model. The first step reads network

flow datasets which consist of normal and malicious network traffic. This labelled data is used

to construct the supervised Machine Learning classification model. After reading the data, we

employ the pre-processing methods to prepare the data to build the model. The prepared

labelled dataset is fitted to the ML classification algorithm, and this builds and returns an ML

classification model capable of classifying network flow data as normal or malicious. The

model is then exported to the application data analysis engine to analyse new network flow

instances gathered from the network in near real-time.

The model presented in Figure 5.1 can be summarised by combining the stages into three main

components, namely; Data Acquisition, Data Pre-processing, and Decision Engine. Where

Packet observation, flow metering, and export resides at the Data Acquisition Component, data

collection and preparation in the Data Pre-processing component, and the data analysis and

classification in the Decision Engine component. Figure 5.3 presents an overview of SFIDS

with the three main components of the system.

64

Figure 5.3 SFIDS using an ensemble learning method

5.3. Integration with SDN architecture

As mentioned in the previous chapters, SDN plays a significant role in SFIDS. The three

components illustrated in Figure 5.3 can be easily integrated with the SDN architecture, as data

acquisition can take place at the Data Plane, data pre-processing at the Control Plane, while the

decision engine component resides at the Application Plane. The following section discusses

how the SFIDS leverages SDN to accomplish its tasks. Figure. 5.4 presents how SFIDS is

integrated with SDN for military tactical networks.

65

Figure 5.4 SFIDS and SDN (Zwane, Tarwireyi and Adigun, 2019a)

5.3.1. Data Plane

 Data Acquisition Component (Packet Observation Stage and Flow Metering and Export

Stage): All the network devices in the Data Plane are embedded with collector agents, as shown

in Figure 5.4, the agents sample and send flow records to the centralised collector. The devices

are configured to collect specific flow metrics and export them to the collector. Today built-in

flow collection and export support are already offered by major vendors, for example, Cisco.

5.3.2. Control Plane

Data Pre-processing Component (Data Collection and Preparation Stage): The data collector

residing in the CP module collects network flow records. The process of filtering is employed

during feature extraction at this stage. The data collector generates and creates different

datasets that are important for the adopted ML technique. Data sources are all network devices

capable of communicating with the OpenFlow controller.

5.3.3. Application Plane

Decision Engine Component (Data Analysis Stage): The machine learning model is

constructed and implemented as an SDN application. Different classifiers and regression

models can be applied for different purposes as SDN applications using different datasets

generated by the flow collector. Various applications can be constructed that are powered by

ML models to influence the functioning of the network. Examples include incident handling

applications, such as Rule or policy enforcement, and path selection applications. In our case,

an ML model is built and used as an SDN intrusion detection application. This application will

66

be capable of classifying network flows as malicious or normal. Figure 5.5 presents the SFIDS

deployment architecture.

Figure 5.5 Proposed deployment architecture(Zwane, Tarwireyi and Adigun, 2019c)

The SFIDS uses a centralised network intrusion detection architecture, where network flow

data is collected from the nodes and sent to a centralised collection point for analysis. This is

made possible by the adoption of the SDN paradigm, which provides scalable data collection,

centralised control, and global network view which allow data extraction, processing, analysis

using minimum network resources (Amaral et al., 2016). Thus, modern tactical military

missions include a large number of actors which may consist of soldiers and vehicles operating

independently or in coordination with each other or in sync with command centres (Poularakis,

Iosifidis and Tassiulas, 2018). These actors are usually organised based on different commands

or tactical goals. Actors are illustrated in Figure 5.5 as the subnets, consisting of a group of

actors with similar commands. These actors may use fixed or deployable infrastructures to

connect to high-level commands, for example, satellites, drones, and vehicles. This is reflected

as switches in Figure 5.5 presented earlier, which can be any network device responsible for

providing connectivity to the subnets.

67

5.4. Overall SFIDS Overview

In order to build an SFIDS, we need a method to extract flow data from the network. This

method of extracting data should not affect or degrade the network’s functionality at any point

in time. This is an important stage since each of the instances created by this function represents

the network flow statistics to be analysed. Note that after getting these values, they are sent for

pre-processing. The pre-processed data plays a big role since it is sent to the trained machine

learning classifier for analysis and classification.

5.4.1. Overall System Functionalities

SFIDS gather and analyse network flow data from the network for anomaly detection. To

achieve this functionality, first, the approach applies flow sampling using network sampling

tools. After the system has effectively collected/sampled a flow instance, the second phase of

the application then applies pre-processing and preparation techniques to the instance, this

converts the flow instance to a suitable format for ML analysis. The prepared flow instance is

then classified as normal or malicious using an ML classifier or model which is trained using

labelled network flow data with both normal and malicious traffic. As seen in Figure 5.6, the

infrastructure layer is composed of networking devices that are regarded as data sources. The

data collector resides in the Control Layer acting as a centralised data collector, and finally, the

intrusion detection module with the classification model is contained in the Application Plane.

68

Figure 5.6 Overall FIDS model utilising SDN architecture

The steps of the algorithms from the SDN Data Plane to the Application Plane as shown in

Figure 5.6 are discussed below:

Step 1: Data acquisition and sampling

This step plays an important role since it gathers network flow data from the network at

multiple points, and presents it to the application for analysis and anomaly detection. As

presented in Figure 5.7. Common approaches that can be utilised for this step include sFlow,

NetFlow, and IPFIX tools (Hofstede et al., 2014).

Figure 5.7 Data acquisition and sampling

69

Step 2: Data pre-processing and preparation

As mentioned above the second step applies pre-processing and preparation to each network

flow instance sampled by the network sampling tools. Data pre-processing is applied to each

of the instances, pre-processing done includes; encoding instance transport protocol, encoding

categorical data, encoding numerical data, applying dimensionality reduction, and data scaling.

These functions can be implemented using data analysis and pre-processing packages, for

example, python pandas, and Scikit-learn (Pedregosa, Weiss and Brucher, 2011). The process is

shown in Figure 5.8.

Figure 5.8 Data pre-processing and preparation

Step 3: Data Analysis

The third step is concerned with analysing each flow instance gathered and prepared by the

first and second steps. For data analysis, a Machine Learning model is constructed and the

model is then used to fit a classifier, and use it to classify each instance to detect network

intrusions. Thus, each flow instance is analysed and classified as either normal or malicious

using an ML classifier trained with labelled data. The classification model generates alerts if a

malicious flow is detected, else the process of network flow acquisition, preparation, and

analysis repeats itself, as demonstrated in Figure 5.9.

70

Figure 5.9 Data Analysis

Step 4: Incident Handling /Mitigation

The SFIDS method is capable of alerting network administrators by generating alerts if

intrusions are detected. In conjunction with generating alerts, the study further proposes a

system capable of handling incidents by employing mitigation strategies, such as blocking and

dropping network traffic from an identified malicious node in the network. From the algorithm

described in Figure 5.10, first, it gathers the ML classification model output. If the output

indicates malicious behaviour, it extracts the IP address, MAC address, and the AP address

providing network connectivity to the malicious node, else it returns to step 1. In step 3 the

system sends network control flows to disable the malicious node (block node) from the

network. Hence malicious nodes can be dropped or blocked from the network using this

approach.

Figure 5.10. Incident Handling

71

5.4.2. Unified Modelling Language (UML)

The SFIDS is composed of three modules that work together to extract, analyse, and take

action, namely: flow sampling module, data collector module, and IDS application module,

which is operated by the ML model. The flow of events in each of these components is

described in Figure 5.11.

Figure 5.11 Flow of event in the SFIDS Model

Sampling Agents

The sampling agents wait for packets to be transmitted and collect flow information. The agent

verifies if the packets meet specified criteria, which is vital for filtering network control

messages, as depicted in Figure 5.11. If the packets meet specified criteria, filtering is

conducted by defining a threshold. The threshold specifies and manages flows by inspecting

packet headers. Flows are then packaged and sent to the collector.

Collector Modules

The collector module is responsible for collecting the data from the different sampling agents

embedded in each network device. Its task is to collect the flow data, employ feature extraction

then pass the data with appropriate features or attributes to the SDN application for data pre-

processing and cleaning.

IDS Application

72

The IDS application periodically queries or retrieves flow records from the collector. It waits

with time out and repeats the process. For each new flow record, pre-processing methods are

applied to the flow record. After converting the flow record into ML acceptable input format,

the ML model is used to classify it as normal or malicious. If the record is normal, then the IDS

application moves on to the next flow record retrieved. However, if the record is malicious, the

application takes a snapshot of the flow record’s data and inserts the information in a log file.

Logging detected malicious incidents could then be helpful for visualisation and security

incident handling. A sequence diagram of the flow-based intrusion detection method using an

ensemble learning technique is shown in Figure 5.12.

73

Figure 5.12 Sequence diagram

74

5.5. Summary

The integration of Machine Learning and SDN for intrusion detection in military tactical

networks will result in a number of benefits which include high detection rates, efficiency, and

real-time data collection. This will help ensure security while introducing timeless and real-

time attack detection and alerting capabilities. Furthermore, the study proposes the use of

network flow data for intrusion detection since it is computationally cheap, independent from

encrypted data, lightweight, and faster compared to the traditional packet-based intrusion

detection approach (Fahad, Sher and Bi, 2017). Accordingly, this chapter presented the Flow-

based IDS model, functional requirements, and the integration with SDN architecture.

75

Chapter 6: SFIDS Implementation

To address the fourth objective of this research (as stated in Chapter 1), which is to implement

SFIDS, this chapter outlines the implementation of the Software-defined Flow-based Intrusion

Detection System (SFIDS) prototype to operationalise it using Mininet-Wifi. The chapter

presents the solution implementation and evaluations guided by the Design Science

methodology mentioned in Chapter 3. This chapter presents the technical feasibility of the

SFIDS method. In particular, the chapter details the experimental setup and technologies used

to realise and implement SFIDS. It further presents the data collection and pre-processing

procedure in a wireless SDN environment to mimic an SDN-based tactical MANET

deployment. This chapter further elaborates on Chapter 5 in its response to the second sub-

research question, by focusing on the implementation SFIDS proposed in Chapter 5.

6.1. Environment Setup and Tools

This section presents the Software-Defined Network (SDN) environment setup and tools used

to implement the proof-of-concept prototype. In particular, the section presents the topology

used, emulation tool, OpenFlow controller, packet generation, and sampling tools.

6.1.1. Mininet-Wifi

Mininet-Wifi (Fontes et al., 2015) is a wireless network emulation tool used in our experiments.

Mininet-Wifi is an extension of the Mininet software popularly used in SDN research. Mininet

is an emulation tool used to prototype a network on a laptop or PC by using the Kernel

namespace feature. The network namespace is used by Mininet to provide individual processes

with their network interfaces, ARP tables, and routing tables. It uses process-based

virtualisation to run switches and hosts on the Kernel, which allow large networks with

different topologies to be emulated and evaluated. Mininet-Wifi augments Mininet with virtual

wireless stations and access points while maintaining the original SDN capabilities and

lightweight virtualisation software architecture. Mininet-Wifi is a tool that allows the

emulation of OpenFlow/SDN scenarios that enable high fidelity experiments that replicate real

networking environments.

76

6.1.2. Network topology

Military tactical networks deployed in the battlefield have to support critical mission

requirements in harsh operational environments. Such networks are forced to deal with the

effects of frequent mobility, irregular link state, and inconstant bandwidth in hostile territory

(Marcus et al., 2019). This subsection presents the proposed tactical MANET topology used in

this work. Figure 6.1. Shows a tactical mobile ad-hoc network topology with three Access

Points (APs) and stations connected to them.

Figure 6.1 Tactical MANET topology

They are assumed to have a strong power supply, for example, they may be devices running

on the troop vehicles, or temporary command and control centre. They provide network

connectivity to the stations connected to them. The low- power devices, such as light devices

carried around by the troops, connect to the cluster heads to get network access. The cluster

heads are used to handle intrusion detection tasks since they possess a high power budget. To

address the problems of dynamic configuration and network global view Software Defined

Networking (SDN) is introduced to this topology.

6.1.3. OpenFlow Controller

The increasing popularity of SDN resulted in several OpenFlow controllers being developed,

these controllers are classified into centralised and distributed controllers. In a centralised

controller, a single server is responsible for all the control plane activities. The benefit of this

approach is simplified management as it makes a single point of control available. Examples

of popular centralised controllers include; Beacon (Erickson, 2013), Rosemary (Shin et al.,

2014), Maestro (Cai, Cox and Ng, 2010), NOX-MT (Tootoonchian et al., 2012), and

77

OpenDayLight. However, centralised controllers suffer from scalability issues as each server

has restricted capacity in handling data plane devices.

In contrast, distributed controllers have advantages in terms of scalability and high performance

during increased demand for requests. Popular distributed controllers include, Hypervisor

(Tootoonchian, 2010), SMaRtLight (Botelho et al., 2014), ONOS (Berde et al., 2014), ONIX

(Koponen et al., 2010), and Floodlight. In this work, the Floodlight controller is used.

Floodlight is open-source software written in Java. The main advantage of Floodlight is that it

is designed to allow third parties to modify the software and develop applications. The

approach uses the Representational state transfer (REST) APIs to simplify the application

interfaces to the product.

6.1.4. Flow Sampling

The most crucial stage of any intrusion detection is the data gathering stage. Intrusion detection

methods are data-driven which means they can fulfil their purpose through analysing data. This

is more than enough to emphasise the importance of data in such systems. The proposed FIDS

system makes use of network flow data for intrusion detection. This is because the task of

acquiring flow records from networks has been simplified recently (Fahad, 2017), with major

vendors nowadays offering incorporated flow gathering and export support in their hardware.

Examples of these flow collection and export protocols include Cisco’s NetFlow, IPFIX, and

sFlow. This process is packaged under the Packet Observation stage. In this work, sFlow was

used for packet observation because it is the process of capturing packets from the

communication line and pre-processing it for further use.

sFlow is a multi-vendor sampling technology that is embedded within network forwarding

devices, in our case SDN data plane devices. It offers the ability to continuously monitor

application-level traffic flows at wire speed on all interfaces simultaneously (Visible and

Packard, 2003). The sFlow mechanism is made up of two components; the sFlow Agent and

sFlow Collector.

The sFlow Agent is a software process that runs as part of network management software

within the devices. It combines both interface counters and flow samples into sFlow

Datagrams. The sFlow Datagrams are then immediately sent to the sFlow Collector, where they

are analysed to produce a rich, real-time, network-wide view of the traffic flows. Figure 6.2

shows the sFlow mechanism, with the sFlow agent, collector, and datagrams.

78

Figure 6.2 sFlow agent and Collector (Visible and Packard, 2003)

The sFlow sampling technology is characterised by the following network traffic monitoring

requirements:

 sFlow makes network-wide view of usage and active routes available, enabling tens of

thousands of interfaces to be monitored from a single location.

 sFlow achieves scalability, meaning it has the capacity for handling or monitoring links

of up to 10GB/s and beyond without adding major network load.

 sFlow can be deployed at a very low cost, applicable in simple Layer 2 switches to

high-end core routers without needing extra memory and CPU.

 sFlow is industry recognised, as such an increasing number of vendors offer sFlow

support in their network devices.

6.2. Simulation and Data Collection

The primary focus of this section is to present the implementation of SFIDS in SDN-based

wireless network. Figure 6.3 illustrates the proposed model embedded with the technologies

discussed in Section 5.4 that are used to accomplish each task.

79

Figure 6.3 Implementation of FIDS model utilising SDN architecture

6.2.1. Network Simulation

In this study, using Mininet-Wifi, a wireless network with three access points (APs) and eight

wireless stations (Sta) as shown in Figure 6.1 was created. The OVSKernelAP was used for

the network Access points. The Floodlight OpenFlow Controller was used as the Network

Operating System (NOS). Using VirtualBox a new Virtual Machine (VM) was created to host

the Floodlight controller, hence the controller was running in a VM running on VirtualBox in

the host computer containing Mininet-Wifi. In essence, the floodlight controller and Mininet-

Wifi reside on logically separate machines, and this is done to mimic a realistic SDN

deployment scenario where the controller may be located in a remote server. The floodlight

controller is started using the command below and the output is shown in Figure 6.4.

 sudo java –jar targer/floodlight.jar

80

Figure 6.4 Starting Floodlight Controller in terminal

After running the Floodlight controller, we open a new terminal in the host machine where

Mininet-Wifi, sFlow, and Scapy are installed. As mentioned, a custom topology with three

access points and eight wireless stations was created. The topology is created through running

the python script as;

sudo python military_tactical_Manet.py

81

Figure 6.5 Simulation of SDN based tactical MANET in Mininet-Wifi

From running the topology script, the resulting topology is used in our experiments. Figure 6.6

shows the network nodes and access points. While Figure 6.7 and Figure 6.8 shows the

Floodlight GUI and different network nodes’ terminals respectively.

Figure 6.6 Wireless SDN topology with three APs and eight stations

82

Figure 6.7 Floodlight GUI with 3 Access points and 8 Stations connected

Figure 6.8 Network nodes or Mininet-Wifi node instances (Containers)

83

6.2.2. Data Collection Scenarios

Military tactical networks with fixed infrastructure have comparable vulnerabilities with their

commercial equivalents, except that they must be secure against adversaries that possess

greater capabilities, resources, and motivation (Kurdziel, 2014). In addition, networks with

mobile infrastructure components have extra vulnerabilities that must be considered. For

example, devices or equipment are subject to capture by adversaries and an intruder may add

a node to the network by replicating its id to get access to cryptographic keys and secret

messages passing through the network.

The evaluation scenarios used in this study focus on adversaries taking advantage of a Mobile

Ad hoc tactical network, as there is a possibility of an adversary gaining access to the network,

and being able not only to eavesdrop sensitive information but also to mislead the users or harm

the network (Carvalho and Costa, 2016). In that regard, the study focusses on internal network

attacks rather than external attacks which are common in fixed infrastructure networks. The

next subsection presents three test scenarios containing simulated internal attacks and

assumptions made in each scenario.

1) Scenario 1: TCP flood attack detection

The first test assumes an intruder has successfully infiltrated the network and launched a TCP

flood attack on a node in the network. The malicious node issues a TCP flood attack to a

specific node they have already identified in the network. The target node is then denied service

by a malicious node connected to the network (see Figure 6.9). The purpose of this test is to

validate the effectiveness of SFIDS in terms of recognising and detecting malicious nodes in

the network.

84

Figure 6.9 TCP flood attack scenario

 Test 1 procedure

The topology of the first test consists of eight nodes each connected to an Access Point (AP)

as described in Chapter 5. All the nodes are connected to the network by wireless links, through

Software Defined Networking (SDN) enabled APs. The attacker node attacks the target node

connected to another AP using a TCP flooding attack.

2) Scenario 2: ICMP flooding attack detection

In the second test, we assume a node was successfully compromised and is used to launch an

ICMP flooding attack on a specific target node. Since in tactical networks nodes are simple

portable devices, it is sufficient to assume that such nodes can be captured and used to

impersonate authorised nodes with hopes to disrupt network functions and interrupt

communications. The purpose of this test is to evaluate the efficiency of the SFIDS in terms of

detecting internal attacks or attacks arising from within the network.

 Test 2 Procedure

The second test consists of eight nodes connected to three access points respectively. Assuming

that one of the network nodes is compromised and starts to act differently by producing a high

volume of traffic flow, shown in Figure 6.10. The compromised node is used to launch an

ICMP flooding attack on a target node. The compromised node (attacker) acts as the source of

the attack.

85

Figure 6.10 ICMP flood attack scenario

3) Scenario 3: DDoS attack detection

The last test assumes two network nodes are compromised and are used to launch a DDoS

attack on a target node. A Distributed Denial-of-Service (DDoS) attack is usually used by an

attacker to disable the availability of services, which can result in tactical network nodes losing

network connectivity and becoming isolated from the network. The purpose of this test is to

measure the effectiveness of the IDS to detect DDoS attacks originating from the internal

network, as shown in Figure 6.11.

Figure 6.11 DDoS attack scenario

 Test 3 Procedure

86

In the third test, the topology remains the same as the previous test cases. We assume two are

compromised, these two compromised nodes are used to generate a high volume of traffic

which amounts to a DDoS attack on a target node. At the same time, normal traffic is running

between all the nodes.

6.2.3. Traffic Generation

In this work, packet generation is done using Scapy (Biondi, 2017). Scapy is a popular python

packet manipulation tool used for packet generation, traffic sniffing, scanning, trace routing,

probing, attacking, and packet forging. This work used Scapy to generate UDP and TCP normal

packets. Also, hping3 was used to generate attack traffic for the three scenarios discussed in

the previous subsection. Hping3 is a free packet generator and analyser used for security

auditing of firewalls and networks.

Python version 3.5 is used to write the code for generating a random source IP address and host

IP address. The “randrange” function is used to produce a uniform random float in the range

[0.0, 0.1]. These numbers are then joined together to form source IP addresses. In the packet

generation process, two additional parameters are set; the packet type and interval of packet

generation. A combination of both UDP and TCP packets are used for the traffic. The interval

was set at 0.1 seconds for the normal traffic. The adopted scripts for the normal traffic are from

the work of (Stoyanova Todorova and Todorova, 2016). The packets are sent using the

interface wlan0 of the respective station. Two parameters are provided to the script, which

specify the range of last numbers of the destination IP addresses, and it generates traffic with

those destination IP addresses of the nodes in the network. A station is randomly selected and

the script to generate the normal traffic is executed. The nodes and traffic being generated is

shown in Figure 6.12 and Figure 6.13.

 sudo python3 normal_traffic.py –s 1 –e 8

87

Figure 6.12 Normal traffic generator using station 1

Scenario 1 TCP flooding attack traffic generation using hping3 commands

Scenario 2 ICMP flooding attack traffic generation using hping3 commands

Hping3 –c [number of packets] –d [packet-size] –w [TCP window size] –p [destination port]

-flood

For Scenario 3, DDoS attacks traffic generation, a python script using Scapy was used to

generate denial-of-service attacks targeted as a single node in the network, hence denying

service to the target node.

sudo python3 ddos_single.py 10.0.0.8

88

Figure 6.13 node (Station 1) generating DDoS traffic to target station with IP address 10.0.0.8

The data is labelled separately, as such the normal traffic is generated independently then given

the label, such as 0, and the attack traffic is also sampled independently and labelled as 1. The

methods used for sampling and pre-processing are described in the following section.

6.2.4. Flow Sampling in SDN

The next step involves data sampling, collection, and pre-processing for the IDS. The two most

common protocols used for flow-stats collection in SDN environments are OpenFlow and

sFlow (Giotis et al., 2014). Nevertheless, in (Giotis et al., 2014) the authors argued that using

the native OpenFlow for periodic processing of flow-stats requests/replies affects the network

performance. They observed that the approach requires a massive amount of CPU processing

power from the controller. In this study, the sFlow-based approach is adopted.

Due to the above-mentioned reasons, sFlow fits our deployment requirements as it can be

deployed to power, memory, and CPU constrained devices and yield great results without

requiring additional memory and processing power. In this work, the sFlow agents are installed

in each of the SDN data plane network devices, in our case the Access Points (APs), see Figure

6.8. The sFlow Collector resides in the node housing the SDN controller, that is, an enormous

power-budget device, possibly located at the military base or headquarters. This is done to

89

simplify the task of passing and sharing information between the sFlow collector and the SDN

controller.

All the APs in the topology are responsible for flow data sampling using the embedded sFlow

agents. The APs send all the gathered data to the central sFlow collector. This method samples

flow-stats data in the SDN environment without affecting network performance and consuming

high processing power.

Each network device, such as AP, collects a variety of attributes for each flow in the network.

However, since not all attributes are useful for intrusion detection, feature extraction methods

are applied to select and extract only the useful attributes for the task of intrusion detection.

Pre-processing of the data is then performed to convert the data into an acceptable format for

analysis.

We run the sFlow-RT flow sampling tool and the CLI output is shown in Figure 6.14, while

the GUI is presented by Figure 6.15.

 ./start.sh

Figure 6.14 Starting sflow tool for flow stat collection in terminal

90

Figure 6.15 sFlow-RT running in the browser

6.2.5. Data Preparation and Labelling

In this study, we extracted eight attributes that are considered important for classifying flow

data in reference to the CIDDS-001 datasets (Markus Ring et al., 2017). The attributes are

presented in Table 6.1.

Table 6.1: Extracted Attributes

Attribute Description

start_time_stamp The start time flow is first seen

source_ip_addr Flow Source IP address

source_port Flow Source port

destination_ip_addr Flow Destination IP address

destination_port Flow Destination port

transport_protocol Transport Protocols used (e.g. TCP, UDP, or ICMP)

flow_size Flow size, average size of the packets seen in the flow

flow_duration The duration of the flow

Hence, a combination of multiple instances extracted from the network results in a dataset

composed of categorical and string attributes. After selecting these features, we apply pre-

processing steps to convert the generated dataset to a format acceptable to classification

algorithms.

91

Usually, Machine Learning algorithms are trained using prepared data that is in the form of

numerical vectors which are called feature vectors. Therefore, before this data(refer to Figure

6.16) can be used to train a Machine Learning model, the data must be transformed into a

feature vector of numeric values. The steps taken to label and pre-process the generated data

are explained below.

Figure 6.16 Flow data sampled from SDN network

A. Observations Distribution

After finalising the experimental setup and making sure everything works well, a python script

using Scapy version 3.0.0 to generate normal network and attack traffic is executed. The

generated traffic is sampled using the defined sFlow mechanism. The normal traffic is given

the label 0, and the attack traffic is labelled 1. In total the dataset used for the machine learning

classifiers for all three scenarios is shown in Table 6.2. While Figure 6.17 shows a graphical

representation of the data.

Table 6.2 Data Distribution for three scenario

 Normal Malicious Total

Scenario 1 95 993 33 802 129 795

Scenario 2 91 269 38 526 129 795

Scenario 3 95 993 33 802 129 795

92

Figure 6.17 Distribution of Normal and Malicious network flow from SDN

i. Encoding Categorical features

Categorical features present challenges to machine learning algorithms when building models.

While other ML packages can transform categorical data into numeric data automatically using

default embedded methods, many other Machine Learning packages do not support such input,

for example, the adopted Scikit-learn library (Pedregosa, Weiss and Brucher, 2011). However,

the Scikit-learn library contains classes that can be used to encode categorical data. For

example, OneHotEncoder and FeatureHashing.

 OneHotEncoder (OHE) is a representation method that takes each category value and

turns it into a binary vector of size |i|, where “i” is the number of categories, and all columns

are assumed to equal zero besides the category column. The limitations of OHE are that its

representation produces high dimensionality, which causes an increase in the model's

training time, serving time, and memory consumption. This method can easily cause the

models to overfit the data.

 FeatureHashing also known as the hashing trick, is a method for turning arbitrary features

into a sparse binary vector. It has a standalone hash function that does not require a pre-

built dictionary of possible categories to function, and this makes it extremely efficient. In

a simple implementation, the user specifies the desired output dimensionality, the method

then hashes the input value into a number, then divides it by the specified dimensionality

and returns the remainder, R. The final output is a vector of zeros with a one in the index

R. FeatureHashing has low dimensionality since the user specifies it, making it efficient in

processing time and memory. The dimesion used in this study are shown in Table 6.3

0

20 000

40 000

60 000

80 000

100 000

120 000

Scenario 1 Scenario 2 Scenario 3

Normal Malicious

93

Table 6.3: FeatureHashing dimensionalities applied to each of the categorical features

Feature Dimensionality

source_ip_addr 10

source_port 10

destination_ip_addr 10

destination_port 10

transport_protocol 4

This work adopted FeatureHashing as the encoding method for all the categorical features of

the dataset. Each categorical feature is hashed on its own, and the resulting hash function is

later used to hash each new instance's categorical features. For example, each source_ip_addr

of an instance is hashed using the same hash function used to hash the training data.

6. Dimensionality Reduction and Scaling

After encoding the mentioned features from the above step, the FeatureHashing method returns

each feature with the specific dimensions, see Table 6.3 above. We then apply dimensionality

reduction using the Principal Component Analysis (PCA) technique. PCA is an unsupervised

linear transformation technique widely used for feature extraction and dimensionality reduction

across different fields. PCA finds the direction of maximum variance in high-dimensional data

and projects it into a new subspace with equal or fewer dimensions than the original data. The

final output from FeatureHashing and PCA returns a single value for each feature. Finally, all

the features are brought together to form a dataset in an appropriate format for machine learning

algorithms in Scikit-learn.

In addition, if a feature has a variance magnitude greater than the variance of other features,

that particular feature might dominate the other features in the dataset, which will introduce a

drawback to the Machine Learning model built using the data. Therefore, we set the variance

of the features to the same range using StanderdScaler class found in Scikit-learn. This scales

the features to a range centred around zero. The final output dataset is shown in Figure 6.18

94

Figure 6.18 Prepared data, after employing FeatureHashing, PCA, and scaling

6.3. Dataset Exploration and Visualisation

The next step after data collection in the data science methodology (Zumel and Mount, 2014)

is data visualisation and analysis, which focuses on identifying relationships and characteristics

of the collected data. In order to determine the relationship between flow-based data features

and the output variable, feature selection, correlation heatmap, and data distribution techniques

were used.

6.3.1. Feature importance

Feature selection is the task of identifying the most related features from the dataset. This can

result in a reduction in the number of features to achieve better accuracy. Feature selection can

help improve model accuracy, reduce overfitting, and reduce training time. In this study

Feature importance was calculated as the score for each feature of the data, the higher the score,

the more relevant is the feature towards the output variable. Feature importance was calculated

using tree Extra Tree Classifier from the Scikit-learn library (Pedregosa, Weiss and Brucher,

2011). Figure 6.19 illustrates the most important features in the flow-based dataset collected

from the simulated SDN-based tactical MANET. The created visuals suggest that src_port is

the most highly-ranked feature in the dataset.

95

Figure 6.19 Scenario1 dataset feature importance

6.3.2. Correlation Matrix Heatmap

Correlation defines how each of the features is related to each other and or the target variable.

The correlations can be negative or positive. A negative correlation means an increase in one

value of the feature decreases the other value, while positive correlation means an increase in

one value of the feature increases the value of the other feature. The feature with more relation

to the target variable can help improve model accuracy, while the ones with a high relation to

each other can affect model performance. The correlation between the features for the first

scenario is presented in Figure 6.20.

96

Figure 6.20 Scenario 1 correlation heatmap of features

6.3.3. Dataset distribution

Data distribution visualisation helps in understanding the characteristics of the data as one can

learn the difference between the data and the target variables, such as normal flow data and

malicious flow data. Data distribution visualisations, using the most relevant features identified

using feature importance above, were plotted to help understand the relations between them.

For example, the distribution of source port numbers is shown in Figure 6.21.

97

Figure 6.21 Distribution of source port by class type for scenario1 dataset

6.4. Summary

This chapter presented how to operationalise SFIDS, an SDN-based IDS that uses ML for data

classification (presented in Chapter 5). The model is realised through a proof-of-concept

prototype that can be deployed in an SDN environment using Mininet-Wifi. To evaluate the

effectiveness of the model, three test scenarios were simulated and network flow data was

collected and pre-processed. The data was sampled and collected from the network using sFlow

(a flow sampling tool). Each of the normal and attack traffic data was collected independently

and labelled accordingly. During pre-processing, FeatureHashing was used to encode

categorical features while PCA was used for feature reduction. Furthermore, this chapter also

presented the observed relations between the features of the data, which include feature

importance, and correlations. Thus, after the collection and preparation of the data, the next

chapter (Chapter 7) evaluates the effectiveness of the SFIDS approach using two ensemble

learning techniques, namely; AdaBoost and RF.

98

Chapter 7: Results and Discussions

For the designed artefact (SFIDS) to be rigorously assessed, methodologies from the

knowledge base must be used (Hevner et al., 2004). In addition, the method must match

properly with the artefact and the nominated evaluation metrics. Examples of design evaluation

methods include; observational, analytical, experimental, testing, and descriptive methods. The

observational method can be the study of an artefact in-depth in the deployment environment,

examples include Case Study and Field Study. Analytical methods study the structure of the

artefact for static qualities, such as complexity. Experimental methods examine the artefact in

a controlled environment for quality and usability, including executing artefacts using artificial

data, known as Simulation. In this study, the experimental method is used, as the artefact is

evaluated using artificial flow data, gathered from a simulated SDN-based tactical MANET

environment. Thus, this chapter strives to provide and present evidence of the effectiveness of

an ML-based FIDS model for tactical mobile networks called SFIDS, described in Chapter 6.

7.1. SFIDS Review

SFIDS uses the SDN paradigm capabilities, which include network global view and real-time

flow data extraction, to gather and process network data from nodes connected to the network.

As in Section 5.3, each network device or node in the SDN infrastructure layer is embedded

with a flow sampling agent that periodically samples flow data passing through the network.

The data is then exported using the UDP protocol to a centralised collector residing in the SDN

control layer. The data collector then prepares the data for analysis and classification in the

SFIDS’s Decision Engine (DE).

The DE is made up of an ensemble ML model which is located in the SDN application layer.

In this study, two models were tested for their effectiveness in detecting intrusive activities in

the tactical network, presented in Section 7.2. The decision engine takes each sample prepared

by the collector and classifies it as either normal or malicious. If the sample is malicious then

the decision engine generates an alert and notifies the SDN controller to take appropriate

actions. For example, incident handling and enforcing rules to mitigate the attack. This process

takes place in real-time allowing timely detection of attacks and mitigation as soon as possible

before further harm is done to the network and its users.

99

A closer look at the SFIDS system and the different operations that occur within it for intrusion

detection in tactical networks is presented in Figure 7.1 and the different colour arrows are

explained below:

Figure 7.1 SFIDS model for tactical networks

 Blue: Flow data is sampled from the Tactical network and exported to a centralised

collector that pre-processes and prepares each sample in real-time for the Decision

engine.

 Green: The decision engine accepts the prepared sample as input and classifies it as 0:

normal or 1: malicious. If the sample is classified as normal, it is dropped and a new

sample is classified.

 Red: The decision engine classifies the input sample as 1: malicious, it sends an alert

to the SDN Network Operating System (the controller) which can send a flow to either

block all traffic originating from the device owning the sample or redirect all from that

device to a sandbox to monitor its activities.

7.2. ML Models Architecture and Parameters

To ensure rigour in the development of the machine learning classification model (Hevner et

al., 2004), this study adopted and used the data science life cycle to develop and evaluate the

ensemble ML models, as discussed in Chapter 3, Subsection 3.2.3. The ML classification

models play a very important role in the proposed FIDS since they are responsible for the data

analysis and intrusion detection functionality. For the evaluation of the SFIDS, ensemble

algorithms Random Forest and AdaBoost were considered since they were recognised as better

performing in Chapter 4. This Section presents the architecture and choice of parameters used

for each of those ensemble algorithms used for SFIDS’s DE.

100

7.2.1. Adaptive Boosting

AdaBoost is commonly known as a meta-estimator that starts by training a classifier on the

original dataset and then trains additional copies of the classifier on the same dataset while

adjusting the weights of the incorrectly classified instances. In this study, an AdaBoost model

using Decision Tree as the base estimator is trained and tested for its effectiveness in detecting

intrusions in SDN-based tactical MANET

In AdaBoost, the main parameter to tune to obtain good performance is the n_estimator

parameter which controls the number of base estimators. To determine the most optimal

number of estimators for good performance, a comparison of the classification error of a

boosted Decision Tree using Real AdaBoost and Discrete AdaBoost was conducted. The results

indicate that Real AdaBoost performed better than Discrete AdaBoost as it obtained a smaller

train and test error. The results also indicated that after 50 trees, both the algorithms converge

with 18.8 % error for the real AdaBoost and 18.9 % error for the Discrete AdaBoost

respectively, as shown in Figure 7.2.

Figure 7.2 Real and Discrete AdaBoost error rate per number of estimators

In the AdaBoost classification model construction, The Real AdaBoost of Scikit-learn with 100

estimators was used, as the setup demonstrated minimum error which implies the capability of

a high detection rate. Besides using 100 estimators to ensure a high detection rate. The

parameters used to ensure model simplicity and less complexity are shown in Table 7.1.

101

Table 7.1 AdaBoost configuration parameters

AdaBoost parameters

Base estimator Decision Tree

N_estimators 100

Learning rate 1

Algorithm SAMME.R

7.2.2. Random Forest

Random Forest is an ensemble model based on Bagging as the ensemble method and Decision

Tree as the base method. In this subsection, the Random Forest algorithm or steps are presented

to help understand how it can be fitted to the training dataset and tuned for effective

performance.

Step 1: Select n random subset from the training set

Step 2: Train n Decision Trees

One random subset of the data is used to train one Decision Tree

Optimal splits for each Decision Tree are based on a random subset of the features. For

example, if there are 10 features, the method randomly selects 5 out of the 10 to split.

Step 3: Each tree predicts the records in the test set independently

Step 4: Make the final prediction

For each record in the test data, use the class with the majority vote as the record's final

prediction.

To achieve optimal performance from a Random Forest model, it needs to be thoroughly tuned

to properly fit the dataset to ensure better performance. As mentioned in the section above,

Random Forest is trained using bootstrap aggregation, where each new tree is fit from a

bootstrap sample of the observations (Scikit-learn, 2019, v0.21.3). In that sense, we let this

training observation be; 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖). Thus, we can calculate the average error for each 𝑧𝑖

using predictions from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This

error is called the out-of-bag (OOB) error. The OOB error is measured at the addition of each

new tree during the training process. Hence this can allow practitioners to approximate a

suitable value of n_estimators at which the error stabilises.

102

To identify the most appropriate configuration of the Random Forest Model, the OOB error

was measured while incrementing the number of estimators. In the setup, three random forest

models considering a different number of features, such as “sqrt”, “log2”, and “all the features”

were compared to determine the best split and appropriate number of trees. The results

indicated all the feature splits considered resulted in the same performance. Also, optimal

performance from the model is obtained when it has 25 or more estimators. Figure 7.3. presents

the performance of the Random Forest model with a different number of estimators.

Figure 7.3 Random Forest OOB error

The insights obtained from the results presented in Figure 7.3 were used to devise the

configuration of an optimal Random Forest model for the presented scenario. Table 7.2

presents the configuration used for the random forest model.

Table 7.2 Random Forest configuration parameters

Random Forest Parameters

N_estimator 100

Criterion Gini

Max_depth None

Min_sample_split 2

Min_sample_leaf 0

Max_features None

As with the AdaBoost classification model presented above, three scenarios are used to validate

and evaluate the model. The test cases and performance results of the Random Forest

classification model are presented next.

103

7.3. Performance Evaluation

The evaluation of the FIDS for tactical MANETs was conducted using three scenarios, see

Chapter 6 Section 6.2. The results are presented based on those three scenarios, namely; TCP

flood detection, ICMP flood detection, and DDoS attack detection.

7.3.1. TCP flood attack detection

The first scenario is concerned with evaluating the model’s effectiveness in detecting TCP

flood attacks issued by a legitimate network node, assuming it was physically captured and

used to launch the attack. Table 7.3 shows the configuration for the training of the model, such

as the dataset distribution for both training and testing of the model. From Table 7.3, 86 962

records were used for training and 42 833 instances for testing, with a total of 129 795

instances.

Table 7.3 Scenario 1 dataset configuration

Scenario 1 Normal Malicious Total

Train 64 416 22 546 86 962

Test 31 577 11 256 42 833

Total 95 993 33 802 129 795

Given the configuration and the parameters presented in Table 7.2 and Table 7.3, and the

dataset configuration in Table 7.4, the confusion matrix of the resultant models after training

with Scenario1 data is shown in Figure 7.4 and Figure 7.5. The AdaBoost model was able to

correctly classify 6092 malicious instances as malicious and 5164 malicious instances as

normal, while correctly classifying 29223 normal instances as normal, and incorrectly

classifying 2354 normal instances as malicious. The Random Forest model, correctly classified

7081 malicious instances as malicious and 4175 malicious instances as normal. This suggests

that the Random Forest model has a higher true positive rate than the AdaBoost model.

However, the Random Forest model has a lower true negative rate than the AdaBoost model.

104

Figure 7.4 AdaBoost Confusion Matrix

Figure 7.5 Random Forest Confusion Matrix

Breaking down these figures, the accuracy of the AdaBoost and Random Forest models can be

calculated using the accuracy formula as,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
=

6092+29223

6092+ 29223+5164+ 2354
=

35315

42833
= 0.8241 ≈ 82%,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
=

7081 + 29064

7081 + 29064 + 4175 + 2513
=

36145

42833
= 0.8438 ≈ 84%

While both the accuracies are reasonable, Random Forest indicates higher detection accuracy.

Further analysis of the results was conducted to ensure the models are independent of the

Accuracy Paradox. The precision and recall are calculated for both the normal and malicious

instances. For example, the values for malicious detection are calculated from the confusion

matrix as;

𝑅𝑒𝑐𝑎𝑙𝑙_𝑎𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
=

6092

6092 + 5164
=

6092

11256
= 0.541 ≈ 54%

And,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
=

6092

(6092 + 2354)
=

6092

8446
= 0.721 ≈ 72%

The precision and recall for the normal traffic data can also be calculated using a similar

approach. All the precision, recall, f1-score, and cross-validation score values for both

AdaBoost and Random Forest are shown in Table 7.4 and Table 7.5 respectively.

Table 7.4 AdaBoost results for scenario 1

AdaBoost Normal Malicious Weighted Avg

Precision 85% 72% 82%

105

Recall 93% 54% 82%

F1-score 89% 62% 82%

Cross Val Score 82.42%

Table 7.5 Random Forest results for scenario 1

Random Forest Normal Malicious Weighted Avg

Precision 87% 74% 84%

Recall 92% 63% 84%

F1-score 90% 68% 84%

Cross Val Score 84.42%

Although the AdaBoost model predicted 11256 instances as malicious instead of 8446

instances, it was able to predict malicious instances correctly 54% of the time, while the RF

model predicted malicious instances correctly 63% of the time. In addition, out of 8446

malicious instances, AdaBoost was able to correctly identify only malicious instances 72 % of

the time, while RF only identified relevant instances 74% of the time. However, the cross-

validation score for AdaBoost is 82.4% while RF obtained a validation score of 84.4%.

Graphically the difference of obtained precision values for both models is illustrated in Figure

7.6. From Figure 7.7, it is evident that random forest is more precise in detecting normal and

malicious traffic than AdaBoost when detecting TCP flood attacks in the network. The poor

performance of AdaBoost can be due to the fact that AdaBoost is very sensitive to noisy data

and outliers while in RF, outliers can easily be detected and don’t affect the performance.

Figure 7.6 Comparison of precision values in TCP flood detection

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

Precision %

AdaBoost Random Forest

106

Figure 7.7 AdaBoost and Random Forest Recall results for TCP flood attack

When the recall is considered for both models, the results obtained indicate that Random Forest

obtained higher precision than AdaBoost. However, for the normal traffic, little difference is

observed compared to the recall of malicious traffic. The f1-score, which is the harmonic mean

between precision and recall, is also presented in Figure 7.8 for both normal and malicious

traffic. Considering that Random Forest indicated better performance in both precision and

recall, the f1-score also emphasises Random Forest’s supremeness in detecting TCP flood

attacks in the SDN environment.

Figure 7.8 AdaBoost and Random Forest F1-score for TCP flood detection

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

TCP Flood Recall (%)

AdaBoost Random Forest

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

TCP Flood F1-score (%)

AdaBoost Random Forest

107

To further show that the Random Forest model performed better than the AdaBoost model, it

obtained an 87 % area under the ROC curve, while the AdaBoost model obtains 85%, as shown

in Figure 7.9. Although Random Forest outperforms AdaBoost in this scenario, the difference

is minimal, thus both models are effective.

Figure 7.9 AdaBoost and Random Forest ROC curves

7.3.2. ICMP flooding attack detection

The second scenario also consists of a total of 129 795 samples, where 91 269 are normal

instances, and the remaining 38 526 instances are malicious. The models, in this case, were

tested using 42 833 instances containing 30 078 normal instances and 12 755 malicious

instances. The training and testing data configurations are shown in Table 7.6. The resultant

AdaBoost model based on those configurations is evaluated.

Table 7.6 Scenario 2 dataset configuration

Scenario 2 Normal Malicious Total

Train 61 191 25 771 86 962

Test 30 078 12 755 42 833

Total 91 269 38 526 129 795

The dataset used was generated based on Scenario 2, which simulated an ICMP flood attack

from a node in the SDN tactical network. The AdaBoost and Random Forest models were

created and tested based on the configuration presented in Table 7.7. The confusion matrix of

the resultant models is presented in Figure 7.10 and Figure 7.11. The AdaBoost model

108

misclassified 4124 normal instances as malicious and 4346 malicious instances as normal. In

this regard AdaBoost classified less malicious instances.

The Random Forest model misclassified 2057 normal instances as malicious and 6475

malicious instances as normal. More than half of the malicious instances were classified as

normal by the Random Forest classifier. From the confusion matrix presented, Figure 7.10 and

Figure 7.11, each model’s accuracy can be calculated using the same approach used in the first

scenario.

Figure 7.10 AdaBoost Confusion Matrix

Figure 7.11 Random Forest Confusion Matrix

109

The precision, recall, f1-score, and cross-validation scores for AdaBoost and Random Forest

are presented in Table 7.7 and Table 7.8.

Table 7.7 AdaBoost results for ICMP flood detection

AdaBoost Normal Malicious Weighted Avg

Precision 86% 67% 80%

Recall 86% 66% 80%

F1-score 86% 67% 80%

Cross Val Score 80.23%

Table 7.8 Random Forest results for ICMP flood detection

Random Forest Normal Malicious Weighted Avg

Precision 81% 75% 79%

Recall 93% 49% 80%

F1-score 87% 60% 79%

Cross Val Score 80.23%

The results obtained for scenario 2, which aims to validate the effectiveness of the models in

detecting an ICMP flood attack indicate that Random Forest can precisely detect both normal

and malicious traffic compared to the AdaBoost model, this is illustrated by the visualisation

in Figure 7.12.

Figure 7.12 AdaBoost and Random Forest precision in ICMP flood detection

When the recall is considered, Figure 7.13, Random Forest also demonstrates superior

performance compared to AdaBoost. However, the difference in recall for Random Forest and

AdaBoost is minimal compared to the precision value difference of the models.

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

ICMP Flood Precision (%)

AdaBoost Random Forest

110

Figure 7.13 AdaBoost and Random Forest recall in ICMP flood detection

The f1-score calculated using both the precision and recall for the models is graphically

presented in Figure 7.14.

Figure 7.14 AdaBoost and Random Forest f1-score in ICMP flood detection

A model with a high f1-score is defined better-performing since it demonstrates effectiveness

in classifying instances into their respective categories correctly. Figure 7.14 shows that

Random Forest is more effective than AdaBoost in classifying normal and malicious instances.

However, the difference is minimal for all the data points in the set used. The ROC curve for

both models in an ICMP flood attack is presented in Figure 7.15.

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

ICMP Flood Recall (%)

AdaBoost Random Forest

0

10

20

30

40

50

60

70

80

90

100

Normal Malicious Avg

ICMP Flood F1-score (%)

AdaBoost Random Forest

111

Figure 7.15 ROC curve for AdaBoost and Random Forest in ICMP flood detection

While Random Forest demonstrated superior performance in some cases of precision, recall,

and f1-score, plotting the true false-positive rate and true positive rate suggests that both models

yield the same level of effectiveness. As in the case of their detection accuracy where they

obtain the same accuracy of 80 %, they obtained the same value of 85% AUC as well. Thus,

for ICMP flood detection both models achieved the same level of performance, which may be

the result of the data containing no outliers and both models were able to generalise very well.

7.3.3. DDoS attack detection

The third test case validates the ensemble models’ effectiveness in detecting a DDoS attack

issued by two nodes to a single target node in the SDN network. The configuration of the

dataset used to build and evaluate the ML models for this scenario is presented in Table 7.9.

Table 7.9 Scenario 3 dataset configuration

Scenario 3 Normal Malicious Total

Train 49 659 37 303 86 962

Test 24 494 18 339 42 833

Total 95 993 33 802 129 795

The results of the ensemble models built using the configuration in Table 7.9 indicated

acceptable performance. The AdaBoost model misclassified 5188 normal instances as

malicious and 6112 malicious instances as normal, while in Random Forest 4685 normal

instances were misclassified as malicious and 4280 malicious instances were classified as

112

normal. The confusion matrix of both models is presented in Figure 7.16 and Figure 7.17,

respectively.

Figure 7.16 AdaBoost Confusion Matrix

Figure 7.17 Random Forest Confusion Matrix

Both the obtained accuracies are fair considering that they are above 70%. However, Random

Forest achieved 79% which indicates a 21% error, while AdaBoost obtains accuracy of 74%

with an error of 26%.

From the confusion matrix values, the precision, recall, and F1-score were calculated. The

figures are shown in Table 7.10 and Table 7.11. The results indicate that Random Forest can

successfully classify flow data instances more correctly than AdaBoost. For example,

AdaBoost correctly classifies malicious instances 70 % of the time, while Random Forest can

classify malicious instances correctly 75% of the time. The cross-validation score for Random

Forest is also higher than AdaBoost.

Table 7.10 AdaBoost result in DDoS attack detection

AdaBoost Normal Malicious Weighted Avg

Precision 76% 70% 73%

Recall 79% 67% 74%

F1-score 77% 68% 74%

Cross Val Score 74.13%

Table 7.11 Random Forest result in DDoS attack detection

Random Forest Normal Malicious Weighted Avg

Precision 82% 75% 79%

Recall 81% 77% 79%

F1-score 82% 76% 79%

Cross Val Score 79.05%

113

Figure 7.18 presents the precision values for normal, malicious, and average for both AdaBoost

and Random Forest. The graph clearly shows that Random forest outperforms AdaBoost in

classifying instances correctly most of the time since the obtained precision values are higher

than AdaBoost.

Figure 7.18 AdaBoost and Random Forest precision in DDoS attack detection

Between the AdaBoost and Random Forest models, Random Forest demonstrated high recall

rates compared with AdaBoost, shown in Figure 7.19. Random Forest also demonstrated

superior performance when the f1-score measure is considered, shown in Figure 7.20, as it is

the harmonic mean between the precision and recall of the model.

Figure 7.19 AdaBoost and Random Forest recall in DDoS attack detection

60

65

70

75

80

85

Normal Malicious Avg

DDoS Attack Precision (%)

AdaBoost Random Forest

0

10

20

30

40

50

60

70

80

90

Normal Malicious Avg

DDoS Attack Recall (%)

AdaBoost Random Forest

114

Figure 7.20 AdaBoost and Random Forest f1-score in DDoS attack detection

Another important metric is the AUC obtained from the ROC curve plotted for false-positive

rate and true positive rate, as illustrated by Figure 7.21. AdaBoost obtained an AUC of 80%

while Random Forest obtained 82%. This indicates that Random Forest outperformed

AdaBoost in DDoS attack detection. RF is capable of conducting unsupervised clustering and

outlier detection in the training dataset, which is effective in the detection of DDoS attacks

since the traffic generated by a DDoS attack contains many different types of packets with

different source addresses. This becomes a limitation to AdaBoost as the presence of outliers

affects its performance.

Figure 7.21 AdaBoost and Random Forest ROC AUC for DDoS attack detection

0

10

20

30

40

50

60

70

80

90

Normal Malicious Avg

DDoS Attack F1-score (%)

AdaBoost Random Forest

115

7.4. Discussion and Analysis

As presented in Chapter 4, ensemble learning methods using Decision Tree as their base

estimator illustrated high detection performance compared to the other Machine Learning

algorithms. This is due to the fact that an ensemble method can learn more than one pattern

present in the data which improves detection rates compared to a single learning classifier

which can only learn a single pattern from the data.

Among the ensemble learners, RF and AdaBoost were chosen for implementation in the

proposed SFIDS. Their implementation was evaluated in three test cases. These test cases

evaluate SFIDS’s effectiveness in detecting TCP flooding attacks, ICMP flooding attacks, and

DDoS attacks.

The first observation from the results is the difference in performance before and after

parameter tuning. Parameter tuning plays a critical role in ensuring best-performance in ML

algorithms as it describes the optimal architecture and parameters for high detection

performances. Nevertheless, some algorithms can yield high performances without any tuning,

while others may require tuning before achieving acceptable detection performances. Table

7.12 presents the AUC scores before and after parameter tuning. Before tuning, the RF

algorithm was only able to achieve an AUC score of 77% and 87% after tuning, in the first test

case. The same behaviour is also applicable to the AdaBoost algorithm. Therefore, after tuning,

RF outperformed AdaBoost when detecting TCP flood attacks (test case 1). For ICMP flood

detection (test case 2), both classifiers obtained the same level of performance. Finally,

Random Forest demonstrated superior performance in detecting DDoS attacks (test case 3)

when compared with AdaBoost. Hence, parameter tuning becomes a necessity in ensuring

optimal performance from the chosen algorithms.

Table 7.12 AUC score before and after parameter tuning

AUC scores

(Before and after

tuning)

AdaBoost (Zwane,

Tarwireyi and

Adigun, 2019c)

AdaBoost

(Tuned)

Random Forest

(Zwane, Tarwireyi and

Adigun, 2019c)

Random

Forest

(tuned)

Test Case 1 77% 85% 77% 87%

Test Case 2 71% 85% 71% 85%

Test Case 3 84% 80% 59% 82%

116

Conversely, since IDS are designed to be practical defence tools, their performance should

ideally be tested in the real world. Yet, research studies that reveal this boundary are rare,

while most studies in the research community studying IDS evaluate their IDS tools using only

data sets (Haq, Onik and Shah, 2015; Khan et al., 2018; Tang et al., 2018; Khraisat et al.,

2019). In this study, we exposed the models that have been trained and evaluated on two data

sets to real-world deployment. It was expected that the classification performance obtained

from the data set evaluation would hold. However, the experiments revealed that this

assumption is not correct. As it can be seen From Table 7.13, the difference in performance

can be severe, with up to 15% - 25% difference in accuracy and AUC scores.

Table 7.13 Comparison of ML using data sets and Implementation

Metric Algorithm CIDDS-001 UNSW-NB15 Implementation (SDN)

Accuracy AdaBoost 99.15% 90.3% 74.13% - 82.42%

 RF 99.14% 90.2% 79.05% - 84.42%

AUC AdaBoost 100% 96.8% 80% - 87%

 RF 99.9% 98.1% 82% - 85%

As presented in Table 7.13, SFIDS utilising a Random Forest model obtained 99% precision

and recall in the CIDDS-001 datasets, and was only able to obtain an average of 84% in the

first deployment scenario, 79% in the second scenario, and 79% in the third scenario. This

applies as evidence that better performance in dataset analysis does not imply better

performance in production, hence the performance may depreciate. These results were also

confirmed by utilising an AdaBoost model in the IDS, as it also obtained 99% in the CIDDS-

001 dataset but in deployment, it achieved an average of 82% in the first scenario, 80% in the

second scenario, and 74% in the third scenario. Therefore, we recommend that network security

researchers may consider a test-bed or an actual implementation for the evaluation of IDS that

uses ML techniques in addition to the traditional method of only using datasets.

117

Chapter 8: Conclusion and Future Work

This chapter aims to summarise and conclude this study. The chapter summaries the research

problem introduced in Chapter 1, followed by the research questions and how they were

answered in this study. Finally, the recommendations for future work and the limitations are

discussed.

8.1. Problem Summary

The nature of the environment in which tactical networks are deployed introduces several

issues for intrusion detection security mechanisms. This is because they are deployed in

different terrain types, which include: urban areas, forests, hills, and the sea. All these

deployment areas introduce different interference characteristics, which cause instabilities in

the network, as a result, network packets get corrupted and dropped. Intrusion detection

methods see such behaviours as malicious and result in high false detection rates. Hence, this

clearly presents the need for an IDS capable of precise detection of hostile nodes in a hostile

environment.

With recent innovation in technology, the goal of this study was to investigate and implement

the most suitable Machine Learning algorithm using SDN for intrusion detection in tactical

Mobile Ad-hoc Networks.

8.2. Research Questions

To address the problem, the author took into consideration one main research question:

How can an intrusion detection system (IDS) that promptly and accurately recognises

cyberwarfare attacks in tactical networks be designed and implemented?

From this research question, four sub-research questions arose. The questions and how the

research addressed each of them are presented below.

1. Which ML algorithms are more suitable for intrusion detection in tactical

networks?

To address this sub-question, first, it was necessary to understand network intrusion detection

techniques and issues in the tactical network domain. This was achieved through background

study and literature review in Chapter 2. Secondly, in Chapter 4 experiments were conducted

118

to evaluate and compare the algorithms using network intrusion detection system evaluation

datasets. The experiments used both packet-based and flow-based network datasets to evaluate

different Decision Tree-based, probabilistic-based, and non-probabilistic-based machine

learning algorithms. From the experiments, it was observed that the Decision Tree-based

methods demonstrated outstanding performance in terms of detection rate and classification

time when compared to the probabilistic and non-probabilistic Machine Learning algorithms,

such as Naïve Bayes and Support Vector Machines. Furthermore, ensemble learning techniques

using Decision Tree as the base estimator demonstrated even better detection rates than the

normal single learner Decision Tree. Specifically, Random Forest and AdaBoost were the top

two to achieve a high detection rate with an acceptable training and classification time when

compared to other ensemble methods, such as Bagging, and Majority Voting utilising

probabilistic and then non-probabilistic algorithms as their base learner methods. Thus, it was

concluded that Random Forest and AdaBoost using Decision Tree as the base estimator are the

most suitable machine learning algorithms for intrusion detection in military hostile

environment deployment scenarios.

2. How can we design an effective IDS model for tactical networks?

This research question was addressed using the Design Science (DS) methodology. DS was

adopted because it offers an important paradigm for conducting applicable and yet rigorous

research. Hence the study applied the DS methodology by following the DS research processes

introduced by Peffers et al., (2007). To design an IDS model for tactical battlefield networks,

technologies, and state-of-the-art paradigms with the potential to help achieve low false

detection and recognition totality in tactical battlefield networks were investigated. At first, the

better performing ML algorithms were determined using network intrusion datasets, in Chater

4. SDN was then identified as the best solution which can allow efficient data collection and

real-time global view of all the network devices connected in the network. Hence, in Chapter

5 the study designed an IDS model that takes advantage of SDN for efficient flow sampling

and preparation. The model further uses the better performing ML algorithm to achieve high

detection rates and accuracy in military tactical MANETs. In that regard, SDN combined with

an efficient ML model can produce an intelligent IDS that is capable of acquiring data from

the tactical network devices, processing and analysing such data to identify intrusive

behaviours and be able to take countermeasures in real-time without any human intervention.

3. How can the designed IDS model be implemented and operationalised?

119

The tactical MANETs usually contain many different handhelds; unmanned aerial vehicles

(UAVs); intelligence, surveillance, and reconnaissance (ISR) devices; mobile networking; and

computing environments to be carried onto various platforms such as tanks, ships, or vehicles.

To imitate this environment and demonstrate the operationalisation of the proposed IDS model,

a network emulation tool known as Mininet-Wifi was used. Mininet-Wifi allows researchers

to implement and evaluate SDN networks. In tactical battlefield networks, flow monitoring and

sampling can be conducted in the UAV nodes and other network nodes capable of transmitting

packets from one node to another. Hence in our implementation in Chapter 6, SDN forwarding

devices are embedded with sFlow sampling techniques, which sample and export network flow

data from the network to a logically centralised collector node for data cleaning and pre-

processing support intrusion detection tasks. sFlow was adopted for flow collection as it is

more efficient and a less resource-intensive alternative to the native OpenFlow sampling

approach used in an SDN environment. The logically centralised flow collector node is

responsible for preparing the data for analysis using a machine learning classification model

train with both malicious and normal network flow data. The tools and simulations presented

in Chapter 6 allowed the replication of the environment and the operationalisation of the model

designed in Chapter 5. In that regard, we were able to design and implement an IDS model for

tactical battlefield networks.

4. What techniques and metrics can be used to evaluate this IDS system?

To answer this sub-research question, in Chapter 7 three scenarios were simulated and network

flow data was collected. For each scenario, normal and malicious network traffic was

generated, such as a TCP flood attack in scenario 1, ICMP flood attack in scenario 2, and a

DDoS attack in the scenario 3. Experiments were conducted to evaluate the effectiveness of

the proposed IDS model. The aim was to evaluate the effectiveness of the proposed IDS when

using either Random Forest and AdaBoost as the classifier to identify malicious nodes,

recognise internal attacks, and identify and detect DDoS attacks. However, to determine the

effectiveness of an IDS one has to measure the quality of the IDS in being exact and accurate

through its predictions. Similarly, the capability of the IDS to remember from its previous

experience is also important since it has to achieve a high detection rate and recognition totality.

Therefore, considering the tactical network simulated scenarios and the prototype IDS

developed, the precision, recall, f-score, and ROC curve metrics were used to evaluate the

effectiveness of the proposed IDS model.

120

8.3. Conclusion

This work presented a flow-based IDS model also regarded as the SFIDS. The study used

Design Science as the research method for SFIDS development and evaluation. The work

demonstrated the utility and applicability of the SFIDS through a proof-of-concept

implementation using SDN, network flows, and Machine Learning techniques for detection.

The obtained results show that an intrusion detection system (IDS) utilising SDN for data

collection and ML for data analysis achieves pleasing performance in timeously detecting

malicious nodes in a hostile environment with high detection rates. However, it is also observed

that the performance of an ML model varies based on the data presented to it. That is, an ML

model can obtain a high detection rate when evaluated and analysed in a specific dataset but

may not obtain the same performance when integrated and deployed in the production

environment.

8.4. Recommendation for Future Research

Network security is steadily becoming a critical factor for businesses, organisations, and

institutions. While researchers and the academic community are continuously proposing

security methods and solutions to ensure security in networks. The recommended solutions are

usually evaluated and validated using network datasets generated a long time ago, such as

KDD-Cup dataset. Most of the evaluations conducted in such a manner don’t present realistic

results and can sometimes be misleading. Therefore, researchers in the IDS field should not

only recommend a classifier as better-performing in the evaluation datasets but also in the

deployment scenarios. It is necessary that researchers evaluate their IDSs using recent datasets

and real-life deployment scenarios to obtain more realistic and accurate results.

Also, the work proposed here demonstrated the effectiveness of just a few ensemble algorithms.

The work can be extended by evaluating the effectiveness of other Machine Learning

algorithms such as deep learning. The creation of military-specific datasets and simulation

topologies in which these datasets can be replayed is a critical factor that can improve research

done for tactical networks’ security.

8.5. Limitations

One of the major drawbacks of this research was the lack of tactical network evaluation datasets

that can be used to validate and evaluate intrusion detection systems designed for tactical

121

scenarios. Also, while Mininet-Wifi presents the platform for realising SDN- based research,

the simulated tactical network lacks characteristics of a military hostile environment. In

addition, due to the storage and simulation environment, a limited number of instances were

sampled from the network, which we suspect could negatively affect the performance.

122

References

Alsmadi, I. M. and AlEroud, A. (2017) ‘SDN-based real-time IDS/IPS alerting system’, in

Studies in Computational Intelligence, pp. 297–306. doi: 10.1007/978-3-319-44257-0_12.

Amaral, P. et al. (2016) ‘Machine learning in software defined networks: Data collection and

traffic classification’, Proceedings - International Conference on Network Protocols, ICNP,

2016-Decem(NetworkML), pp. 1–5. doi: 10.1109/ICNP.2016.7785327.

Atlam, H. F., Walters, R. J. and Wills, G. B. (2018) ‘Internet of Nano Things’, (October), pp.

71–77. doi: 10.1145/3264560.3264570.

Ayash, M. (2014) ‘Research Methodologies in Computer Science and Information Systems’,

Computer Science, 2014, pp. 1–4.

Berde, P. et al. (2014) ‘ONOS : Towards an Open , Distributed SDN OS’, HotSDN ’14

Proceedings of the third workshop on Hot topics in software defined networking, pp. 1–6.

doi: 10.1145/2620728.2620744.

Bhunia, S. S. and Gurusamy, M. (2017) ‘Dynamic Attack Detection and Mitigation in IoT

using SDN’.

Biondi, P. (2017) ‘Scapy Documentation’. doi: 10.1016/j.physrep.2008.09.003.

Boero, L., Marchese, M. and Zappatore, S. (2017) ‘Support Vector Machine Meets Software

Defined Networking in IDS Domain’, in Proceedings of the 29th International Teletraffic

Congress, ITC 2017. doi: 10.23919/ITC.2017.8065806.

Botelho, F. et al. (2014) ‘SMaRtLight: A Practical Fault-Tolerant SDN Controller’, pp. 1–7.

Available at: http://arxiv.org/abs/1407.6062.

Boutaba, R. et al. (2018) ‘Open Access A comprehensive survey on machine learning for

networking : evolution , applications and research opportunities’. Journal of Internet Services

and Applications.

Buczak, A. L. and Guven, E. (2016) ‘A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection’, 18(2), pp. 1153–1176.

Burbank, J. L. et al. (2006) ‘Key challenges of military tactical networking and the elusive

promise of MANET technology’, IEEE Communications Magazine. IEEE, 44(11), pp. 39–45.

doi: 10.1109/COM-M.2006.248156.

123

Cai, Z., Cox, A. L. and Ng, T. S. E. (2010) ‘Maestro : A System for Scalable OpenFlow

Control - Technical Report TR10-08’.

Carpenter, G. A. et al. (1992) ‘Fuzzy ARTMAP: A Neural Network Architecture for

Incremental Supervised Learning of Analog Multidimensional Maps’, IEEE Transactions on

Neural Networks, 3(5), pp. 698–713. doi: 10.1109/72.159059.

Carvalho, J. M. A. and Costa, P. C. G. (2016) ‘Collaborative Approach for a MANET

Intrusion Detection System using Multilateration’, 2016 11th International Conference on

Computer Engineering & Systems (ICCES). IEEE, pp. 59–65. doi:

10.1109/ICCES.2016.7821976.

Chang, R. J. et al. (2013) ‘Extremely Lightweight Intrusion Detection (ELIDe)’,

(December).

Chen, X. et al. (2018) ‘Ensemble Learning Methods for Power System Cyber-Attack

Detection’, 2018 IEEE 3rd International Conference on Cloud Computing and Big Data

Analysis (ICCCBDA). IEEE, pp. 613–616. doi: 10.1109/ICCCBDA.2018.8386588.

Choudhary, G. et al. (2018) ‘Intrusion Detection Systems for Networked Unmanned Aerial

Vehicles : A Survey’.

Demeyer, S. (2011) ‘Research methods in computer science’, IEEE International Conference

on Software Maintenance, ICSM. IEEE, p. 600. doi: 10.1109/ICSM.2011.6080841.

Division, C. S. et al. (1997) ‘Bayesian Network Classifiers *’, 163, pp. 131–163.

Djuris, J. (2012) ‘Design Space Approach in Optimization of Fluid Bed Granulation and

Tablets The cientific WorldJOURNAL Research Article Design Space Approach in

Optimization of Fluid Bed’, (May 2014). doi: 10.1100/2012/185085.

Dunning, T. and Friedman, E. (2014) Practical Machine Learning: A New Look At Anomaly

Detection.

Erickson, D. (2013) ‘The beacon openflow controller’, p. 13. doi: 10.1145/2491185.2491189.

Ertam, F., Õ, F. Õ. K. and Yaman, O. (2017) ‘Intrusion Detection in Computer Networks via

Machine Learning Algorithms’.

Fahad, M., Sher, M. and Bi, Y. (2017) ‘Flow-based intrusion detection : Techniques and

challenges’, Computers & Security. Elsevier Ltd, 70, pp. 238–254. doi:

124

10.1016/j.cose.2017.05.009.

Fontes, R. R. et al. (2015) ‘Mininet-WiFi : Emulating Software-Defined Wireless Networks’.

Giotis, K. et al. (2014) ‘Combining OpenFlow and sFlow for an effective and scalable

anomaly detection and mitigation mechanism on SDN environments’, (February 2016). doi:

10.1016/j.bjp.2013.10.014.

Gogoi, P., Bhuyan, M. H. and Bhattacharyya, D. K. (2012) Packet and Flow Based Network

Intrusion Dataset.

Govindarajan, M. and Chandrasekaran, R. (2012) ‘Intrusion Detection using an Ensemble of

Classification Methods’, Proceedings of the World Congress on Engineering and Computer

Science, I(October).

Haq, N. F., Onik, A. R. and Shah, F. M. (2015) ‘An Ensemble Framework of Anomaly

Detection using Hybridized Feature Selection Approach (HFSA)’, 2015 SAI Intelligent

Systems Conference (IntelliSys). IEEE, pp. 989–995. doi: 10.1109/IntelliSys.2015.7361264.

Hebb, D. O. (1949) The Organization of Behavior.

Hevner, A. R. et al. (2004) ‘Research Essay Design Science in Information’, MIS Quarterly,

28(1), pp. 75–105.

Hofstede, R. et al. (2014) ‘Flow Monitoring Explained : From Packet Capture to Data

Analysis With NetFlow and IPFIX’, 16(4), pp. 2037–2064.

Illy, P. et al. (2019) ‘Securing Fog-to-Things Environment Using Intrusion Detection System

Based On Ensemble Learning’, (April), pp. 15–18.

Jabbar, M. A. et al. (2017) ‘ScienceDirect ScienceDirect RFAODE : A Novel Ensemble

Intrusion Detection System’, Procedia Computer Science. Elsevier B.V., 115, pp. 226–234.

doi: 10.1016/j.procs.2017.09.129.

Jeung, J., Jeong, S. and Lim, J. (2011) ‘Adaptive Rapid Channel-hopping Scheme Mitigating

Smart Jammer Attacks in Secure WLAN’, pp. 1231–1236.

Ji Qing et al. (2015) ‘An SDN-based resource pre-combination dispatching strategy in

military network’, in, pp. 6 .-6 . doi: 10.1049/cp.2015.0834.

Karresand, M. (2004) ‘Intrusion Analysis in Military Networks – An Introduction Technical

report Intrusion Analysis in Military Networks – An Introduction’, (December).

125

Khan, S. et al. (2018) ‘Feature Selection of Denial-of-Service Attacks Using Entropy and

Granular Computing’, Arabian Journal for Science and Engineering. Springer Berlin

Heidelberg, 43(2), pp. 499–508. doi: 10.1007/s13369-017-2634-8.

Khraisat, A. et al. (2019) ‘Survey of intrusion detection systems: techniques, datasets and

challenges’, Cybersecurity. Cybersecurity, 2(1). doi: 10.1186/s42400-019-0038-7.

Kidston, D. et al. (2010) ‘Mitigating security threats in tactical networks’, … Communication

and Networks, …, pp. 1–14. Available at:

http://ftp.rta.nato.int/public/PubFullText/RTO/MP/RTO-MP-IST-092/MP-IST-092-20.doc.

Koponen, T. et al. (2010) ‘【8】Onix A Distributed Control Platform for Large.pdf’.

Kurdziel, M. T. (2014) ‘Cyber threat model for tactical radio networks’, Wireless Sensing,

Localization, and Processing IX, 9103(June), p. 910305. doi: 10.1117/12.2047582.

Liu, T. et al. (2018) ‘Intrusion Detection of Data Platform Based on Extreme Learning

Machine in Civil and Military Integration’, (Csse), pp. 296–306.

Madhu, A. and Sreekumar, A. (2014) ‘Wireless Sensor Network Security in Military

Application using Unmanned Vehicle’, IOSR Journal of Electronics and Communication

Engineering (IOSR-JECE), pp. 8–51.

Marcus, K. M. et al. (2019) ‘An Environment for Tactical SDN Experimentation’, MILCOM

2018 - 2018 IEEE Military Communications Conference (MILCOM). IEEE, pp. 1–9. doi:

10.1109/milcom.2018.8599775.

McCulloch, W. S. and Pitts, W. H. (1943) ‘originally published in: Bulletin of Mathematical

Biophysics, Vol. 5, 1943, p. 115-133’, 5, pp. 115–133.

Metcalf, T. R. and Lapadula, L. J. (2000) ‘Intrusion Detection System Requirements A

Capabilities Description in Terms of the Network Monitoring and Assessment Module of’.

Michalos, A. C. and Simon, H. A. (1970) The Sciences of the Artificial, Technology and

Culture. doi: 10.2307/3102825.

Monshizadeh, M., Khatri, V. and Kantola, R. (2017) ‘An adaptive detection and prevention

architecture for unsafe traffic in SDN enabled mobile networks’, in Proceedings of the IM

2017 - 2017 IFIP/IEEE International Symposium on Integrated Network and Service

Management. doi: 10.23919/INM.2017.7987395.

126

Moustafa, N., Slay, J. and Technology, I. (2015) ‘Intrusion Detection systems’.

Nguyen, T. N. (2018) ‘The Challenges in SDN/ML Based Network Security : A Survey’.

Available at: http://arxiv.org/abs/1804.03539.

Pawgasame, W. and Wipusitwarakun, K. (2015) ‘Tactical wireless networks: A survey for

issues and challenges’, 2015 Asian Conference on Defence Technology (ACDT), pp. 97–102.

doi: 10.1109/ACDT.2015.7111592.

Pedregosa, F., Weiss, R. and Brucher, M. (2011) ‘Scikit-learn : Machine Learning in Python’,

12, pp. 2825–2830.

Peffers, K. et al. (2007) ‘A Design Science Research Methodology for Information Systems

Research’, Journal of Management Information Systems, 24(3), pp. 45–77. doi:

10.2753/MIS0742-1222240302.

Poularakis, K., Iosifidis, G. and Tassiulas, L. (2018) ‘SDN-enabled Tactical Ad Hoc

Networks : Extending Programmable Control to the Edge’.

Pushpa, M. and Kathiravan, A. (2016) ‘Cross-layer based multiclass intrusion detection

system for secure multicast communication of MANET in military networks’, Wireless

Networks. Springer US, 22(3), pp. 1035–1059. doi: 10.1007/s11276-015-1065-2.

Revathi, S. and Malathi, A. (2013) ‘A Detailed Analysis on NSL-KDD Dataset Using

Various Machine Learning Techniques for Intrusion Detection’, 2(12), pp. 1848–1853.

Rhodes, B. J. et al. (2005) ‘Maritime situation monitoring and awareness using learning

mechanisms’, Proceedings - IEEE Military Communications Conference MILCOM. IEEE,

2005, pp. 646-652 Vol. 1. doi: 10.1109/MILCOM.2005.1605756.

Ring, M et al. (2017) ‘Flow-based benchmark data sets for intrusion detection’, European

Conference on Information Warfare and Security, ECCWS, pp. 361–369. Available at:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85028023805&partnerID=40&md5=1e95f767994dde4a33199aa24418b078.

Ring, Markus et al. (2017) ‘Technical Report CIDDS-001 data set’, 001, pp. 1–13.

Shin, S. et al. (2014) ‘Rosemary : A Robust , Secure , and High-Performance Network

Operating System Categories and Subject Descriptors’, Ccs, pp. 78–89.

Spencer, J. et al. (2016) ‘Towards a tactical software defined network’, 2016 International

127

Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7. doi:

10.1109/ICMCIS.2016.7496552.

Sterbenz, J. P. G. et al. (2002) ‘Survivable Mobile Wireless Networks : Issues , Challenges ,

and Research Directions’.

Stoyanova Todorova, M. and Todorova, S. T. (2016) DDoS Attack Detection in SDN-based

VANET Architectures.

Sultana, N. et al. (2018) ‘Survey on SDN based network intrusion detection system using

machine learning approaches Survey on SDN based network intrusion detection system using

machine learning approaches’. Peer-to-Peer Networking and Applications, (January). doi:

10.1007/s12083-017-0630-0.

Sultana, N. et al. (2019) ‘Survey on SDN based network intrusion detection system using

machine learning approaches’, Peer-to-Peer Networking and Applications. Peer-to-Peer

Networking and Applications, 12(2), pp. 493–501. doi: 10.1007/s12083-017-0630-0.

Svenmarck, P. et al. (no date) ‘Possibilities and Challenges for Artificial Intelligence in

Military Applications’, pp. 1–16.

Tang, T. A. et al. (2018) ‘Deep Recurrent Neural Network for Intrusion Detection in SDN-

based Networks’, 2018 4th IEEE Conference on Network Softwarization and Workshops,

NetSoft 2018. IEEE, (NetSoft), pp. 462–469. doi: 10.1109/NETSOFT.2018.8460090.

Tootoonchian, A. (2010) ‘Hyperflow.Pdf’.

Tootoonchian, A. et al. (2012) ‘On Controller Performance in Software-Defined Networks’,

Presented as part of the 2nd USENIX Workshop on Hot Topics in Management of Internet,

Cloud, and Enterprise Networks and Services, p. 55. doi: 10.1145/2491185.2491199.

Verma, A. and Ranga, V. (2018) ‘Statistical analysis of CIDDS-001 dataset for Network

Intrusion Detection Systems using Distance-based Machine Learning’, Procedia Computer

Science. Elsevier B.V., 125, pp. 709–716. doi: 10.1016/j.procs.2017.12.091.

Viinikka, J. et al. (2009) ‘Processing intrusion detection alert aggregates with time series

modeling’, Information Fusion. Elsevier B.V., 10(4), pp. 312–324. doi:

10.1016/j.inffus.2009.01.003.

Vijayanand, R., Devaraj, D. and Kannapiran, B. (2018) ‘Intrusion detection system for

128

wireless mesh network using multiple support vector machine classifiers with genetic-

algorithm-based feature’, Computers & Security. Elsevier Ltd, 77, pp. 304–314. doi:

10.1016/j.cose.2018.04.010.

Visible, N. and Packard, H.- (2003) ‘Switch / Router’.

Wilson, C. (2004) ‘CRS Report for Congress Received through the CRS Web Network

Centric Warfare : Background and’.

Wrona, K. and Szwaczyk, S. (2017) ‘SDN testbed for validation of cross-layer data-centric

security policies’, pp. 1–6. doi: 10.1109/ICMCIS.2017.7956483.

Yan, Q. et al. (2016) ‘Software-Defined Networking (SDN) and Distributed Denial of

Service (DDoS) Attacks in Cloud Computing Environments : A Survey , Some Research

Issues , and Challenges’, 18(1), pp. 602–622.

Ye, N. et al. (2002) ‘Multivariate statistical analysis of audit trails for host-based intrusion

detection’, IEEE Transactions on Computers, 51(7), pp. 810–820. doi:

10.1109/TC.2002.1017701.

Yoon, C. et al. (2015) ‘Enabling security functions with SDN: A feasibility study’, Computer

Networks, 85, pp. 19–35. doi: 10.1016/j.comnet.2015.05.005.

Yuill, J. et al. (2000) ‘Intrusion-detection for incident-response , using a military battle ® eld-

intelligence process’, 34, pp. 671–697.

Zaidi, N. A. et al. (2017) ‘Efficient parameter learning of Bayesian network classifiers’,

Machine Learning. Springer US, 106(9–10), pp. 1289–1329. doi: 10.1007/s10994-016-5619-

z.

Zaman, M. (2018) ‘Evaluation of Machine Learning Techniques for Network Intrusion

Detection’, NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management

Symposium. IEEE, pp. 1–5.

Zumel, N. and Mount, J. (2014) Practical Data Science with R. Manning Publications.

Zwane, S., Tarwireyi, P. and Adigun, M. (2019a) ‘A Flow-based IDS for SDN-enabled

Tactical Networks’, International Multidisciplinary Information Technology and Engineering

Conference (IMITEC).

Zwane, S., Tarwireyi, P. and Adigun, M. (2019b) ‘Ensemble learning approach for Flow

129

based Intrusion Detection System’, IEEE AFRICON, pp. 0–7.

Zwane, S., Tarwireyi, P. and Adigun, M. (2019c) ‘Ensemble learning for Flow based IDS : A

SDN Implementation’, Southern Africa Telecommunication Networks and Applications

Conference (SATNAC).

Zwane, S., Tarwireyi, P. and Adigun, M. (2019d) ‘Performance Analysis of Machine

Learning Classifiers for Intrusion Detection’, 2018 International Conference on Intelligent

and Innovative Computing Applications (ICONIC). IEEE, pp. 1–5. doi:

10.1109/iconic.2018.8601203.

