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Abstract 

Network security is increasingly becoming a critical and continuous issue due to ongoing 

advancements in Information and Communication Technologies (ICT) and the concomitant 

rise in the number of security threats. This is especially true for military communication 

networks as security breaches may have detrimental effects. However, over the years, it has 

become increasingly difficult to attain high levels of detection accuracy in military tactical 

networks with conventional anomaly detection systems due to the dynamic nature of network 

traffic in the battlefield, special operations, and the harsh environment where they operate. 

Intrusion detection systems (IDS) have emerged as essential countermeasures to preserve 

network security. In addition, the introduction of software-defined networks (SDN) in tactical 

networks presents countless opportunities for security.  

This study developed an IDS model for military tactical networks that utilizes Machine 

Learning (ML) techniques for high detection rates and SDN for network global view and 

centralised data collection. Following the Design Science methodology, the model was 

designed based on guidelines from related literature, and a proof-of-concept prototype of the 

model was implemented to assess its effectiveness. The experimental results indicated that 

Machine Learning using network flow data collected via SDN can improve intrusion detection 

rates in tactical networks. Among the machine learning techniques, ensemble learning methods 

utilising Decision Tree classification methods, namely Random Forest and Adaptive Boosting, 

obtained high recall and precision when detecting DDoS attacks, malicious, and misbehaving 

nodes in an SDN-enabled tactical network.  
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Chapter 1: Introduction 

 

1.1. Introduction 

Modern military communications are revolutionising the way war will be fought in the future 

by evolving towards a Network-Centric Warfare (NCW) paradigm (Wilson, 2004). In this 

paradigm, strength is achieved through communications networks and information sharing. 

This battle philosophy places the emphasis on the ability to achieve an internet-like capability 

in operational areas, providing ubiquitous network access to enable “anytime, anywhere” 

communication (Burbank et al., 2006). Tactical networks are those deployed to support users 

and platforms within the tactical operational region, also known as the tactical environment. 

Military tactical networks are divided into four important segments (Mishra et al, 2017). The 

first segment comprises the computing infrastructure residing at the military headquarters. 

Generally, the computing and communication resources at this segment are usually plentiful 

and tend to be static. The second segment consists of the infrastructure network that connects 

headquarters with the base environment used to support military operations and missions. It 

uses satellite communications and sometimes leverages available infrastructures such as 

cellular communication networks. 

The third segment is the base environment that uses portable laptops, desktops computers, 

networking equipment, and storage devices. The base is usually set up and used for a temporary 

period, which sometimes ranges from a few days to a couple of months. It is used to provide 

logistical support to military personnel who may be deployed to operations covering a large 

area. Lastly, connecting to the base environment is the tactical segment. 

The tactical segment consists of the portable devices and networks used by militaries’ 

personnel at the edge of the operations. It usually consists of various handhelds devices, 

unmanned aerial vehicles (UAVs), mobile networking devices, intelligence surveillance and 

reconnaissance (ISR) devices, and a computing environment to be carried onto different 

platforms including ships, vehicles, and tanks. An ad hoc network can be formed by these 

devices and platforms by themselves, which is called a tactical mobile ad hoc network (tactical 

MANET). However, this network is not completely ad hoc as it usually relies on a limited 
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amount of infrastructural support, such as the other upper tactical environment segments for 

information (Mishra et al, 2017).  

As opposed to commercial networks, tactical networks usually operate in extremely harsh 

environmental conditions such as desert, jungle, arctic, and maritime, where all those different 

environmental conditions may have different radio frequency propagation and signal 

characteristics that present a number of challenges. Figure 1.1. illustrates some of the 

difficulties imposed by the tactical environment on tactical communication technologies.  

 

Figure 1.1 Limitations experienced in a military tactical environment (Burbank et al., 2006) 

The diversity of military tactical operations, the variety of equipment, the diverse speeds at 

which numerous parts of the tactical operation take place, the scale, and the environmental 

conditions all present difficult challenges to the full and smooth deployment and functioning 

of tactical networks (Burbank et al., 2006). One of the major challenges to the tactical network 

is communication and information security. For example, in the tactical segment of the 

network, most of the devices are subject to capture by adversaries. Once captured, an adversary 

can compromise the captured device to infiltrate the network for malicious intent, such as lead 

troops into an ambush or gunfight with non-hostile forces. In addition, due to the wireless 

nature of the tactical network, it is possible for adversaries to listen to unprotected 
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communications of their enemies or launch various kinds of cyber-attacks that can have 

detrimental effects, such as issuing denial-of-service attacks to shutdown nodes from 

communicating permanently or temporarily causing issues in the tactical network. As a result, 

security in tactical networks remains a big challenge for both Academia and Industry (Ken et 

al., 2017, Pawgasame et al., 2015, Little 2014). 

In (Pawgasame and Wipusitwarakun, 2015) a survey discussing current issues and challenges 

in tactical wireless networks was presented. The authors argued that hostile environments 

where tactical wireless networks operate make it hard to protect information and data from 

being dropped, modified, or stolen by an intruder. For example, in a hostile environment 

network packets are regularly corrupted and dropped at nodes, and detection mechanisms might 

perceive such behaviour as a threat and raise a false-positive alert.  They also argued that 

incorrect detection of hostile nodes in a hostile environment is one major research gap in the 

security of tactical wireless networks. They claimed that preventative methods such as 

cryptography are not sufficient for the protection of tactical networks, malicious nodes need to 

be detected early before any harm is done, hence they stated that a precise and reliable intrusion 

detection mechanism for the tactical wireless network is needed.  

Also, Spencer et al. (2016) argued that there is no centralised management system by which 

networks and services can be globally configured and provisioned in many deployed military 

networks. This limits the flexibility of the network operator to make quick and urgent network 

security and management configurations. They also argued that tactical networks are deployed 

in different environments, hence, network movement and every modification to QoS 

requirement encompasses a time-consuming planning and configuration processes which 

degrades the speed of the network deployment, presenting challenges in terms of deploying, 

redeploying, and managing information and security services, limiting the swiftness and 

elasticity of a military force.  

However, from those studies, it is evident that network management and security pose 

important technical challenges that need extensive innovation in order to realise an ideal 

tactical network solution (Burbank et al., 2006). Thus, regarding that, this research focuses on 

analysing and addressing management and security challenges in tactical networks through the 

utilisation of new emerging technologies. While different security solutions have been 

proposed, such as authentication and cryptography, in (Atlam, Walters and Wills, 2018) the 

authors argued that cryptography sometimes failed to handle some attacks, for example, denial-
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of-service attacks. Atlam, Walters and Wills (2018) emphasised that it is critical to establish 

an Intrusion Detection System (IDS) that is capable of identifying and reacting to attacks 

efficiently in the network.  

Intrusion Detection Systems (IDS) are needed in tactical networks to promptly and accurately 

recognise cyber-warfare attacks as soon as they are initiated and to respond to them before any 

harm is conducted. IDS are used to discover, determine, and identify illicit usage, access, and 

demolition of information systems. The different types of IDS techniques are; misuse-based, 

anomaly-based, and hybrid-based techniques. The misuse-based techniques, also known as 

signature-based techniques, are aimed to detect attacks using known signatures of those attacks. 

They are commonly known for their effectiveness in detecting known attack types without 

producing a large number of false alarms. Their drawback is that they are ineffective in 

detecting novel (zero-day) attacks, and they also require their database to be frequently updated 

with rules and signatures manually. 

On the other hand, anomaly-based methods learn normal network behaviour and identify any 

deviations from the learned normal behaviour. Over the years they have been attractive since 

they have the ability to detect zero-day attacks. They are also attractive since the profiles of 

normal activities are customised for every application, network, or system, which makes it hard 

for attackers to know which activity they can conduct without being detected. The disadvantage 

of this method is a high false alarm rate, since new unseen legitimate system behaviours may 

be categorised as anomalies. The hybrid method combines both the misuse- and anomaly-based 

techniques. Hybrid methods are commonly used to improve detection rates of recognised 

intrusions and also reduce false-positive rates for unknown attacks. 

IDS for tactical networks have a number of ideal goals and objectives they should meet. These 

include perfect accuracy and recognition totality (Little et al.., 2006). However, tactical 

networks present unique challenges to intrusion detection methods, since they are ad hoc, 

dynamic, and operate in harsh environments (Little et al.., 2006). As a result, the intrusion 

detection methods used usually fail to meet the ideal goal and objectives. How to reduce false 

alarms in tactical environments is one of the open research gaps that need to be addressed 

(Pawgasame et al, 2015). In addition, due to the lack of stable infrastructure which results in 

the absence of a centralised entity in the tactical segment (Spencer et al., 2016), this limits the 

applicability of intrusion detection methods in these networks. Therefore, there is a need for an 
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appropriate mechanism that can allow centralised control and a global view in a tactical 

network for successful IDS implementation.  

More recently, Machine Learning (ML) techniques have shown promising results in intrusion 

detection (Ken et al, 2017, Haq et al, 2015) through high detection rates and efficiency.  On 

the other hand, a newly emerged paradigm known as Software Defined Network (SDN) has 

shown great opportunities for the networking community. The SDN architecture is defined by 

the separation of the data plane from the control plane and consolidates the control plane 

functionality at a central location in the network (Mishra et al, 2017). The concept of SDN can 

offer a number of benefits to tactical military networks as it can allow improved traffic 

management abilities, meaning quick configurations for service delivery to support current 

operational priorities. SDN can also enable automation in military tactical networks, which will 

decrease preparation overheads as units and headquarters move. Lastly, tactical networks 

require skilled operators to support deployed military networks, SDN can reduce the burden on 

such operators, meaning fewer expert operators will be required to support deployed military 

networks (Spencer et al, 2017). It is, however, not clear what benefits SDN can provide for 

intrusion detection tasks in tactical networks. 

Hence, this study presents an IDS that takes advantage of ML capability to learn from the past 

and SDN concepts to support service delivery in intrusion detection tasks to improve attack 

detection in mobile wireless networks.  

 

1.2. Motivation 

Tactical networks play a special role in networking, especially in the military battlefield where 

they support different kinds of devices in a very harsh environment. Network management and 

security are identified as the major concerns as the rate of network attacks has increased 

dramatically over the years and the tactics used by attackers continue to evolve. Given the low 

physical security in military tactical mobile nodes, a multi-level protection mechanism is 

required irrespective of the authentication used. Intrusion detection systems (IDS), acting as 

the second line of defence after authentication have the potential to improve the security of 

tactical networks by detecting different attacks and can help prevent other harmful attacks. 

Unfortunately, due to their dynamic nature, and lack of fixed infrastructure in tactical networks, 

IDS implementation in such networks is challenging and complex. Also, how to handle packet 
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processing flows efficiently for huge amounts of data remains a research challenge. Therefore, 

there is a need to look at available options to implement IDS that address the current limitations 

of IDS in tactical networks. 

Alternatively, with the promising emerging SDN technology, exploring the possibilities and 

opportunities this technology can provide in network security is important. Since network 

attacks increase daily, network security improvements need to be a major priority to catch up 

with these daily threats or attacks. SDN-based intrusion detection investigation will not only 

benefit tactical networks but would also benefit other kinds of network technologies. It is 

envisioned that this work will provide a Machine Learning IDS for SDN-based mobile tactical 

networks. This architecture will allow efficient data collection as well as detect and mitigate 

threats without any human intervention. It will also allow a mobile ad hoc network environment 

to be able to run IDS more efficiently and have less false detection rates since the controller 

will allow a global view of the network. 

1.3. Problem Statement 

Tactical networks are used in military operations so that airplanes, moving personnel, and tanks 

can communicate. Being that nodes communicate via wireless links, these wireless links among 

nodes are vulnerable to link attacks which comprise eavesdropping, leakage of secret 

information, active interference, data tampering, impersonation, denial-of-service (DoS), and 

message distortion. Additionally, in mobile ad hoc networks’ routing protocols, nodes usually 

assume that other nodes would be reliable, trustworthy, and always cooperate  to relay data 

(Kumar & Dutta, 2016). This assumption leaves vulnerabilities in the network because 

attackers can easily compromise the network by capturing and inserting malicious/non-

cooperative nodes in the network. This is especially true for military communications, given 

the low physical security of mobile devices.  

To achieve a secure network, detection measures such as intrusion detection systems (IDS) 

serving as a second line of defence in addition to traditional authentication measures have been 

investigated. To a certain extent, research work has previously been conducted in intrusion 

detection for traditional wired networks. However, due to key architectural differences, 

principal among them being the lack of fixed infrastructure and routing protocols used (Mishra 

et al, 2004), applying this research to wireless networks is not an easy plug-and-play task.  
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Thus, the lack of a single or centralised management system by which network services can be 

configured and provisioned limits the applicability of intrusion detection methods in tactical 

networks (Spencer et al, 2016). Other issues include false detection of nodes in tactical 

environments (Pawgasame et al, 2015), and performance and overhead concerns due to 

complex rules used to investigate network traffic (Alsmadi et al, 2016). Therefore, tactical 

MANETs require special IDS, designed specifically to benefit their needs and special 

characteristics, which include limited resources (Ken et al, 2017, Liu et al, 2008) before they 

can be safely deployed for industry use. 

A technology paradigm that can provide a centralised and global view of the entire network, 

also allowing applications containing network rules to be applied without affecting the network 

functionalities is known as Software Defined Network (SDN). This work proposes an IDS that 

takes advantage of the network global view provided by SDN and the learning and predictive 

capabilities provided by Machine Learning (ML) to advance detection accuracy in Intrusion 

Detection Systems of tactical MANETs. This study evaluates readily available ML algorithms 

to select the most appropriate. These algorithms are then implemented for intrusion detection 

tasks in SDN-based tactical MANETs and evaluated. 

 

1.4. Research Questions 

This research aims to address the following research question: 

 How can an Intrusion Detection System (IDS) that promptly and accurately recognises 

cyberwarfare attacks in tactical networks be designed and implemented? 

1. Which state-of-the-art techniques are the most suitable for intrusion detection in 

tactical networks? 

2. How can we design an effective IDS model for tactical networks? 

3. How can the designed IDS model be implemented and operationalised? 

4. What techniques and metrics can be used to evaluate this IDS model? 
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1.5. Goal and Objectives 

1.5.1. Research Goal 

The goal of this study is to investigate and implement the most suitable Machine Learning 

algorithm for intrusion detection in SDN-based tactical MANETs. 

1.5.2. Research Objectives 

The goal is broken down into the following achievable objectives:  

1. To establish start-of-the-art network intrusion detection practices and the most suitable 

techniques. 

2. To evaluate and compare machine learning algorithms using network intrusion datasets. 

3. To design and implement an IDS model for tactical networks. 

4. To evaluate the effectiveness of the proposed IDS. 

 

1.6. Research Methodology 

To achieve the goal and objectives of this study, the Design Science (DS) methodology was 

adopted and implemented as the main research. The DS method includes steps to create and 

evaluate IT artefacts designed to solve an identified organisational problem, and it involves a 

rigorous procedure to design an artefact to solve practical problems, make research 

contributions, evaluate designs, and communicate results to appropriate audiences (Peffers, 

Tuunanen, Rothenberger, & Chatterjee, 2007). In this research, the goal was to develop an 

intrusion detection model for tactical MANETs. The IDS model was instantiated into a 

prototype and validated through implementation. Thus, the DS methodology was broken down 

into the DS research processes (see Figure 1.2) as outlined by (Peffers et al., 2007), that is, (i) 

Problem analysis, (ii) Establishment of state-of-the-art, (iii) Solution design, (iv) and Solution 

evaluation. A brief overview of these phases is given in the following subsections: 1.6.1 to 

1.6.4. 
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Figure 1.2 Overview of the research methodology 

1.6.1. Problem Analysis 

(Hevner et al., 2004) stated that Design Science research must produce or develop a 

technology-based solution that addresses an important and relevant business problem. In 

military tactical scenarios, security is increasingly becoming an issue especially since more 

devices are being connected/networked. Therefore, the need to continuously monitor and tackle 

security issues is relevant. In that regard, this study addresses a relevant, real-world problem 

that can benefit organisations to achieve improved network security and incident-handling 

capabilities. 

1.6.2. Establishment of state-of-the-art 

To establish the state-of-the-art, this research used the literature review method. Recent 

conference papers and journals were reviewed to identify limitations and challenges in current 

network security approaches. The review also focused on the different security issues, attacks, 

and vulnerabilities experienced in tactical networks, challenges observed in the implementation 

of security mechanisms, and the performance of state-of-the-art network security techniques. 

1.6.3. Solution Design 

In this research, an IDS model for tactical networks was envisioned. By considering state-of-

the-art computing paradigms, namely Software Defined Networks (SDN) and Machine 

Learning (ML), an IDS model was developed utilising SDN for network global view and data 

collection, while ML algorithms were used for effective classification of network data. The 

applicability of the model was demonstrated through the instantiation of a prototype based on 

the model. This solution intends to address network security issues and challenges that exist in 

military tactical networks. 
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1.6.4. Solution Evaluation 

In this research, the proposed IDS (artefact) was deployed as a prototype to operationalise and 

evaluate it. Simulated network traffic was used to analyse and evaluate the proposed IDS to 

assess its quality and efficacy using experiments.  

1.7. Research Contributions 

In the recent era, the network structure itself is vulnerable to many different cyber-security 

issues. Therefore, network security can be considered a major concern. In that regard, this 

research explored how the existing attack methods can be detected and mitigated using recently 

proposed cybersecurity and networking trends. 

Firstly, Software Defined Network (SDN) is noted as one of the few trends with a wide range 

of advantages to Tactical Networks. Thus, this work sets a foundation for further exploration 

into SDN as a security inhancer solution while also spurring future works and exploration of 

SDN potential in Tactical Netwoks. This study designed an IDS model that takes advantage of 

SDN for efficient flow sampling and preparation. This study demonstrated by designing a 

model for an intrusion detection system in SDN based tactical network, that SDN can be a 

useful asset to IDSs. 

Further more, in the quest for effective network intrusion detection approaches, Machine 

Learning (ML) is also one of the fast growing fields and extensive research is being conducted. 

However, most studies conducted in the IDS domain only conduct a performance analysis of 

different Machine Learning algorithms using datasets without explicit demonstration of how 

they can then be used and implemented. This is a drawback as comparing ML methods using 

datasets obtained online doesn’t guarantee an effective IDS. Thus, this research followed the 

Design Science method to develop a protype of the proposed model. This method offers an 

important paradigm for conducting applicable and yet rigorous research. This approach allow 

the development, implementation and evaluation of a proposed systems, which can be adopted 

by other researchers in the field to evaluate their proposed ML based IDSs in addition to dataset 

analysis.  

In this research, SDN combined with an efficient ML model produced an intelligent IDS that 

is capable of acquiring data from the tactical network devices. It then processes and analyze 
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such the data to identify intrusive behaviours, while able to take countermeasures in real-time 

without any human intervention. 

1.8. Organization of the Dissertation 

The remainder of this dissertation is organised as follows:  

Chapter 2 provides the theoretical background regarding the problem analysis and 

technologies concerned. The chapter discusses the concepts of security in tactical 

communication networks, intrusion detection, and the Software-defined networking paradigm. 

This chapter also provides the related work found in the literature focusing on the different 

approaches used for intrusion detection and methods of evaluation.  

Chapter 3 presents the methodology adopted to fulfil and achieve the goal and objectives of 

the study. This chapter helped guide the research to ensure rigour and facilitate the research. 

Chapter 4 provides a performance evaluation of popular Machine Learning techniques 

commonly used for intrusion detection. This chapter directly responds to the second research 

objective, which is to analyse and select the most suitable Machine Learning method that can 

be used for intrusion detection in tactical networks. From this chapter, two conference papers 

were presented, one based on Packet-based NIDS (Zwane, Tarwireyi and Adigun, 2019d) and 

the other on Flow-based NIDS datasets (Zwane, Tarwireyi and Adigun, 2019b).  

Chapter 5 presents the proposed solutions for network security in resource-limited network 

environments. The chapter proposes a Flow-based IDS model and explains its corresponding 

components. Based on this chapter, a conference paper was published (Zwane, Tarwireyi and 

Adigun, 2019a). 

Chapter 6 presents the operationalisation of the model proposed in Chapter 5. In this chapter, 

a proof-of-concept prototype of the model was implemented and evaluated for its effectiveness. 

Another conference paper was generated from this chapter, which outlines the proposed 

deployment architecture, test scenarios and preliminary results (Zwane, Tarwireyi and Adigun, 

2019c). 

Chapter 7 presents the results and discussions to help validate the proposed approach. 
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Chapter 8 concludes the study and the findings. The chapter summarises and further responds 

to each of the research questions outlined for the study. The conclusion, limitations, and future 

direction of this research are presented.  
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Chapter 2: Background and Literature 

Review 

This chapter investigates the state-of-the-art and debates its relation to security issues in tactical 

networks. Conducting a detailed investigation of recent and innovative technologies could 

enable us to identify paradigms that can be used to design an ideal intrusion detection 

framework. This investigation also helps us to identify potential paradigms capable of 

addressing some of the network and communication security concerns in tactical networks. In 

accordance with the adopted methodology, Design Science Research, Step 1 is the problem 

analysis phase where the gaps in existing literature are identified. 

In that regard, this chapter explores the different technologies that can be adopted and 

implemented, to achieve the aim of this research. This chapter is structured as follows: in 

Section 2.1 the notion of network security and the security requirements for tactical networks 

are presented. This aims to provide enough background and the area of interest for this research. 

Section 2.1 further discusses different popular intrusion detection approaches available in the 

network security research domain. This section gives a review of statistical, Machine Learning, 

and other intrusion detection approaches.  

 A review of the military tactical communication networks is presented in Section 2.3. The 

section discusses the challenges presented by other researchers in the deployment and usage of 

intrusion detection mechanisms on the military battlefield. In Section 2.4, the techniques 

recognised as suitable for adoption in intrusion detection system design for tactical networks 

are presented. Hence, ML and SDN are presented as the required solutions to mitigate the issues 

currently experienced in tactical network IDS deployment. Studies utilising ML for the task of 

intrusion detection are reviewed and their limitations are presented. Similarly, studies 

presenting intrusion detection techniques using ML and SDN are also reviewed and gaps are 

identified. Finally, Section 2.5 presents a summary of the issues, gaps, and future research 

presented in the reviewed works. 

2.1. Tactical Networks Security Challenges and Implications 

The magnitude of instability in a hostile environment is enormous, as many problems and 

challenges are encountered in tactical networks. Security is one of the most important issues to 

be addressed. Network security plays an important role in tactical communication networks as 
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security breaches can directly affect mission success and cost personnel lives. Military tactical 

communication presents many different challenges to network security researchers. Hence the 

most appealing characteristics which influence such challenges are the nature of the network 

environment since network members are usually mobile, and topology changes over time as 

nodes randomly leave and join in an ad hoc manner. In addition, the devices or equipment are 

subject to capture, and enemies are considered well-skilled and motivated.  

Over the past years, researchers have tried addressing the many issues encountered in tactical 

networks. For example, a protection mechanism that protects the physical layer from smart 

jammer attacks was proposed by Jeung et al, (2011). Usually, a smart jammer is used by an 

impostor to examine wireless channels for active channels and discharge a jamming signal on 

that channel. The method by Jeung et al, (2011) refers the smart jammer to the incorrect channel 

and prevents the actual channel from being jammed. Another example includes the efforts of 

(Madhu and Sreekumar, 2014), where they used a wireless sensor network to implement a 

secure unmanned vehicle navigation system. They used a cluster-based method where each of 

the clusters contained a set of armed and sealed motes in a specific area to prevent physical 

attacks, shown in Figure 2.1. In addition, a key management technique to avoid single key 

compromise which usually led to the entire network being compromised was proposed through 

using an improved version of LEAP. Their work resulted in a vehicle navigation system that 

was controlled by wireless sensor networks making the network more secure. The authors also 

claimed that their system was applicable to several applications, which include fire detection, 

and maintenance and monitoring applications.  

 

Figure 2.1 Unmanned vehicle to protect the battlefield (Madhu and Sreekumar, 2014) 

The stated work applies as evidence of the effort towards ensuring security in tactical networks. 

Unlike commercial wireless networks, tactical wireless networks operate in a hostile 
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environment where the conditions are very unstable. Pawgasame and Wipusitwarakun, (2015) 

presented six issues that are encountered in tactical wireless networks as a result of the large 

magnitude of instabilities in the harsh environments where they are deployed. The first issue 

defined was the challenge of understanding the network’s behaviours. The great uncertainty in 

the network makes it hard to describe and predict network behaviours and outcomes. The 

ability of the network to cope with unstable changes was also reported as another issue 

experienced in tactical wireless networks. For example, real-time information sharing is 

required by some military applications, thus if the information transmission system cannot 

tolerate disruptions due to a harsh environment, defence systems may lose track of the hostile 

target. Another issue they reported in tactical wireless networks was network congestion. 

Congestion occurs when multiple mobile nodes are trying to communicate across the network 

gateway or access the same channel at the same time. Since instabilities may cause delays in 

packet transmission, packets may arrive at the gateway at the same time and cause congestion. 

In addition, congestion may also be caused during retransmissions due to unstable channels.  

Also, in a hostile environment, packets may be corrupted or dropped due to the instability of 

the network, this may result in unreliability in the data delivery (Pawgasame and 

Wipusitwarakun, 2015). Intermittent interferences and hostile attacks may corrupt packet 

header and route packets to the wrong destination. Thus, reliability remains an essential issue 

that requires attention in tactical wireless networks. Also, the instability and dynamic 

movement of nodes in a tactical network present availability issues, since nodes may be out of 

range or links may be broken. As such, the ability of the network to provide network services 

is also a challenge in a tactical wireless network. Finally, security issues are commonly 

triggered by hostile attacks. For example, an adversary may insert malicious nodes into the 

network to drop, modify, or steal information to introduce information reliability problems. 

While sending huge numbers of packets could result in congestion and availability 

complications, likewise, network robustness and availability can be violated through 

communication disruption caused by an enemy jamming the communication signals. A 

summary of tactical wireless networks’ research interests, gaps, and challenges are presented 

in Table 2.1. 

Table 2.1. Summary of research interest in tactical wireless networks (Pawgasame and Wipusitwarakun, 2015) 

Research 

interests 

Solved Issues Gaps Challenges 



16 
 

Wireless 

network 

modelling 

Analysing the 

network 

Hostile attacks capture 

models 

Modelling network hostile 

attacks 

Performance Robustness, 

Reliability, 

Congestion 

The trade-off on each 

technique 

Performance improvement 

against instability for 

minimal trade-off effects 

Routing Robustness, 

Reliability, 

Availability, 

Security 

Unstable reliable routes 

in a hostile environment 

The predictable route is more 

attractive in a hostile 

environment 

Security Security, 

Availability, 

Reliability 

False detection of 

hostile nodes in a 

hostile environment 

Accurate detection of hostile 

nodes in the hostile 

environment 

Management Congestion and 

Reliability 

Hard to achieve 

management in 

uncertain networks 

Management with uncertain 

network parameters 

In (Spencer et al., 2016), the authors argued that the delivery of information services was hard 

to achieve due to the nature and structure of the deployment environment. They reported that 

the general characteristics of military networks, which include heavy reliance on wireless 

barriers, critical reliance of the commander on real-time access to information, and network 

installations and reinstallation at very short notice, introduces problems to network managers 

as they have to deliver vital information with the required quality of service in the face of 

changing operational priorities (Spencer et al., 2016). They further argued that in various 

deployed military networks there is no single management system by which networks and 

services are configured and provisioned. Hence the creation of a hostile set of services in the 

tactical environment becomes a complex exercise in terms of planning and configuration, as 

there is a need for the manual configuration of a large number of devices, and this approach is 

also prone to human error.  

The issues presented by (Spencer et al., 2016) serve as an example of other issues in the military 

tactical network that affects or limits the swiftness and elasticity of a military force. This is 

because the operational tempo is degraded due to time-consuming planning and configuration 

processes undertaken each time the network, or part of the network, is moved. In addition, an 

expert signaller needs to be available at every networked site to support the delivery of 
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information services which is usually a burden in terms of training and logistics in order to 

maintain and support such personnel (Spencer et al., 2016). The mentioned studies illustrate a 

clear picture of the challenges and issues of experience in tactical networks. Some issues are 

introduced due to the environment in which such a network is deployed, and other issues are 

introduced by the general characteristics of the tactical network. We also observe that in 

addition to security challenges, the lack of centralised control and management where security 

services can be provisioned in tactical networks remains a gap that needs to be addressed. 

Sterbenz et al., (2002) presented issues and challenges experienced in improving the 

survivability of mobile wireless networks and military networks’ requirements. The authors 

presented six security and operational requirements for wireless networking technologies to 

support military operations:  

 Transmission security (TRANSEC) – concerned with protecting wireless 

communication at the physical layer, medium access, and data link layers over wireless 

media. 

 Communication Security (COMSEC) – concerned with protecting data and voice 

communications between designated endpoints, it is one of the most important security 

requirements that must be addressed.  

 Network Infrastructure Protection (NIP) – defined as the protection of routing and 

network management infrastructure against both passive and active attacks. 

 Authentication and Access Control (AAC) – defined as the support for multi-level 

security measures by implementing role-based access control on the application, 

application servers, and their proxies. 

 Robustness – defined as the requirement for supporting hardware and software failure, 

asymmetric and unidirectional links, or limited connection range of wireless 

communication. 

 Effectiveness – defined as efficiency in the use of electrical and computing power, 

silicon real estate, and communication bandwidth. 

While those security requirements are equally important in securing networking technologies 

supporting military operations, in this study, we only focus on NIP through intrusion detection 

systems (IDS). Early efforts of IDS focused more on protecting the hosts from malicious 

intents. These systems were known as host-based intrusion detection systems (HIDS). 

However, with the birth of computer networking and its adoption by organisations, part of the 

IDS research shifted towards network intrusion detections (NIDS) which is the area of study 
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in this research. The next section presents popular network intrusion detection techniques 

proposed by other researchers to address network security in communication networks. 

2.2. Categorisation of NIDS Techniques 

The purpose of network security is to serve as a mechanism to guard network resources and 

users against unauthorised and malicious intermediaries. Network security problems are 

intricate and valid for all types of computer networks regardless of whether they are for home 

users, commercial use, or military purposes (Karresand, 2004). Thus, network security plays a 

very important role in today’s communication systems because they ensure confidentiality, 

integrity, and availability (CIA) of communication and network resources. However, in recent 

years different attacks have been formulated to attempt to compromise these CIA principles 

(Kidston et al., 2010).  

Intrusion detection systems (IDS) are an essential tool for protecting IP-based networks and to 

a certain extent maintain the CIA principles. IDS examine network traffic and computer system 

logs to identify attacks and raise alerts if attacks are detected. Traditional methods of intrusion 

detection employed deep packet inspection or stateful protocol analysis to detect attacks in 

network traffic (Fahad, Sher and Bi, 2017). Stateful protocol analysis checks complete 

semantics of protocols against a specified range and considers out-of-range values as 

intrusions. This method is regarded as computationally expensive (Fahad, Sher and Bi, 2017).  

On the other hand, deep packet inspection presents challenges when the monitored network 

traffic is encrypted, additionally, it is computationally expensive to inspect complete packet 

payload and can cause performance bottlenecks in a high-speed IP network. (Karresand, 2004) 

argued that one of the most critical challenges in intrusion detection is encryption. They 

claimed that the main key in network intrusion detection systems is to inspect the packets sent 

over the network. This implies that the more information available the more efficient and 

correct the detection will be. However, when different parts of the packets or parts that 

approximately relate to the different layers in the OSI stack are encrypted, the efficiency of the 

network intrusion detection system decreases. Their claim is valid, especially in military 

networks, as very strong and thorough encryption policies are used to ensure the confidentiality 

of the information sent (Karresand, 2004).  

As an alternative approach to those limitations, researchers such as Fahad, Sher and Bi (2017) 

proposed a flow-based intrusion detection system. This is a new solution to protect IP networks 
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from unauthorised access. Flow-based Intrusion detection systems utilise network flow records 

as input and analyse them to discover whether the network traffic is either normal or malicious 

(Fahad, Sher, and Bi, 2017). Flow-based IDSs have become attractive to researchers due to the 

number of advantages they offer over traditional deep packet inspection techniques for 

intrusion detection. For example, 1) Flow-based inspection of packets has fewer privacy 

concerns than packet-based inspection since user information or payload is sheltered from any 

transitional scans. 2) Flow-based Intrusion detection can handle encrypted data as it only 

analyses packet header or flow information. And 3) Flow-based IDS are reported to have the 

ability to operate on high-speed backbone links, low deployment costs, and near real-time 

response, (Fahad et al., 2017). In this work, we adopted flow-based attributes for the proposed 

intrusion detection system, since it is more effective than using traditional packet-based 

attributes in terms of speed, resource usage, and real-time detection of attacks. Hence, we 

present a methodology for gathering network flow data in an SDN enabled network.  

The adoption of flow-based intrusion detection has resulted in the proposal of different 

techniques for its design. A taxonomy of flow-based intrusion detection techniques was 

presented by (Fahad, Sher and Bi, 2017), shown in Figure 2.1. The taxonomy hierarchy 

classifies flow-based intrusion detection system approaches into statistical, Machine Learning, 

and other techniques.  
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Figure 2.2 Taxonomy of flow-based intrusion detection techniques (Fahad, Sher and Bi, 2017) 

In statistical techniques, the system builds a profile of the network traffic using a statistical 

function of the network traffic parameters (Fahad, Sher and Bi, 2017). The created profile is 

then used to compare incoming unseen traffic. The technique uses statistical measures to 

calculate the similarities between network traffic and the profile of normal network traffic. If 

the similarities are beyond a defined threshold the flow is marked malicious, otherwise normal. 

(Fahad, Sher and Bi, 2017) divided statistical methods into univariable, multivariable, and 

time-series statistical methods, see Figure 2.2.  

Univariable statistical techniques  (Ye et al., 2002) are methods that analyse a single variable 

at a time, this can be the mean or standard deviation. Generally, they assume an underlying 

known distribution of the data. In a multivariable technique, the relationship between two or 

more variables is analysed. Lastly, time-series statistical methods (Viinikka et al., 2009) use 

previously observed or seen values to predict new values. 

Machine Learning (ML) is a field of computer science that trains computers to think like 

humans and make decisions when required (Haq, Onik and Shah, 2015). These methods try 

and copy human thinking practices which include logical reasoning, intuition, learning from 

past experiences, trial and error, and generalisation. ML techniques have been used extensively 
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over the years, and they continue to be applicable in flow-based intrusion detection as well. A 

comparison of both statistical and machine learning techniques as presented in Table 2.2. 

Table 2.2. IDS technique advantages and disadvantages 

ID techniques Advantage Disadvantage 

Statistical 

techniques 

 Don’t require previous 

knowledge of network attacks. 

 Can precisely detect attacks that 

cause abrupt and highly differed 

changes in network traffic. 

 High dimensionality in network traffic 

affects performance. 

 Challenging to calculate the indicators 

of normal network traffic. 

 It can be bypassed by small and slow-

ramped attacks that keep the effect of 

attack below statistical thresholds. 

Machine 

learning 

techniques 

 Can adjust themselves 

according to the traffic passing 

through. 

 Have a high detection rate. 

 Methods like ANN are able to 

generalise the model from 

limited information. 

 Difficult to construct representative 

training datasets for supervised 

Machine Learning methods. 

 Can be computationally costly during 

training. 

 Have high false-positive alarm rates. 

 Unsupervised learning techniques need 

background information to determine 

the number of groups. 

 

Other common techniques used for flow-based IDS are entropy, flow metric thresholds, flow 

signatures, and semantic link networks (SLNs) (Fahad, Sher and Bi, 2017). The idea behind 

entropy is to capture important characteristics of features in the traffic distribution and use 

these features to detect abnormalities and malicious behaviour in the network traffic. The 

commonly used entropy methods include Shannon (Zaidi et al., 2017), Renyi, and variations 

of Tsallis entropy (Berezinski et al, 2014). The flow metric threshold is also used to detect an 

intrusion in the network flows. For example, one can specify an upper or a lower bound 

threshold that can send alerts if the specified threshold is being violated by any flow passing 

through the observation point. SLN mines the time, location, and other related information 

from the flow data which is used by the semantic links to detect suspicious flows on 

probabilistic semantic networks (Fahad, Sher, and Bi, 2017).   



22 
 

(Choudhary et al., 2018) presented a survey based on IDS tools with particular focus on 

vulnerabilities and attacks directed towards a networked Unmanned Aerial Vehicles (UAV) 

environment. In their work, they presented the key component taxonomies of the UAV IDS. 

The components of the taxonomy are shown in Figure 2.3. The work also argued that to achieve 

a UAV-IDS system that ensures the necessary levels of effectiveness and efficiency, the IDS 

computational cost, threat and behaviour modelling, detection latency, implementation 

overhead, threat assessment, maximum network throughput, minimum resource consumption, 

and effective monitoring and response are challenges that need to be addressed to construct a 

secure cyber-physical UAV-IDS system (Choudhary et al., 2018).  

 

Figure 2.3 Taxonomy of UAV-IDSs (Choudhary et al., 2018) 

In that regard, this study focused on state-of-the-art NIDS techniques regarded as most 

effective for intrusion detection. Another aspect that is usually ignored by researchers is how 

to handle data collection and processing in a timely and efficient manner to accommodate high 

volumes of data (Sultana et al., 2019). In this study, the possibility of Software Defined 

Networks (SDN) to ensure efficient and real-time data collection from the network is 
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considered. Hence in the next section, the state-of-the-art techniques and approaches that have 

the potential to address the challenges of intrusion detection systems in communication 

networks are presented. 

2.3. State-of-the-art NIDS Techniques 

Intrusion detection systems can be constructed using different techniques including statistical, 

time-series, ML, and others. Our study focusses on ML-based techniques as they are being 

continuously adopted due to their effectiveness when compared with other intrusion detection 

techniques (Fahad, Sher and Bi, 2017) (Khraisat et al., 2019). Also, Machine Learning and 

Artificial Intelligence (AI) have many potential applications in the military context in different 

domains and all levels of warfare (Svenmarck et al., 2018). For example, “ongoing advances 

in artificial intelligence (AI)” is planning to change society and eventually the character of war 

in accordance with the 2018 National Defense Strategy. The DoD has prioritised AI investment 

to retain multidomain supremacy over peer and near-peer opponents. The DoD AI approach 

calls for quickening the delivery and approval of AI to establish a common foundation to scale 

AI’s impact across the department and enable decentralisation, development, and 

experimentation; developing partnerships with industry, academia, allies and partners to 

promote an AI workforce and to lead in military AI ethics and safety. 

In addition, with the introduction of SDN, many researchers are now focusing on how SDN 

can help address limitations presented by tactical network deployment architecture. For 

example, in (Poularakis, Iosifidis and Tassiulas, 2018) an innovative architecture design for 

SDN-enabled mobile ad hoc networks was proposed. SDN has the potential to promote more 

advanced traffic management in the tactical boundary (Spencer et al., 2016; Poularakis, 

Iosifidis and Tassiulas, 2018) and other domains. Also, Yan et al., (2016) argued that SDN 

introduces opportunities for improved traffic management agility, as the complexity and 

volume of traffic from tactical systems grows. This study focuses on how state-of-the-art 

technologies such as SDN and ML can be utilised to improve network intrusion detection 

capabilities in tactical communication networks. The next subsections present works already 

done by other researchers in the field of intrusion detection using SDN- and ML-based 

approaches respectively. 
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2.3.1. Machine Learning-based IDS 

Approach 

ML methods have recently been applied extensively in cybersecurity applications. ML 

classification algorithms commonly used for intrusion detection are applied in the form of 

Single classifiers, Hybrid classifiers, and Ensemble classifiers (Govindarajan and 

Chandrasekaran, 2012). Single classifiers are utilised when a single ML algorithm is used to 

construct an intrusion detection system. Hybrid classifiers offer a combination of more than 

one Machine Learning algorithm. Ensemble classifiers use multiple weak learners, such as 

classifiers performing somewhat superiorly to a random classifier. Hybrid classifiers are 

preferred over single classifiers, this is because one algorithm can be used for pre-processing 

the samples in a training set, removing non-representative training samples, then the results can 

be given to the second algorithm for pattern recognition to design a classifier, this method can 

vastly improve intrusion detection performance. Some of the most popular ML classification 

algorithms used in intrusion detection tasks include: 1) Decision Tree (DT) with Gini index 

(Breiman et al., 1984), Gain-ratio (Quinlan, 1993), and Chi-square (Mingers, 1989b), 2) Naïve 

Bayes (NB) (Division et al., 1997), 3) Support Vector Machine (SVM) (Chen et al., 2018), 4) 

Multi-Layer Perceptron (MLP) (Djuris, 2012), 5) Adaptive Boosting, 6) Bayesian Network (BN) 

(Division et al., 1997), 7) Random forest (RF) (Jabbar et al., 2017), and 8) Bootstrap 

Aggregation. 

In (Buczak and Guven, 2016), an ML and DM methods used in the cybersecurity literature 

review was presented. The authors reported that the most effective method for cyber 

applications has not been established, they stated that due to the fertility and complexity of 

these techniques, it was difficult to make one recommendation for each task. Everything is 

based on the nature of an attack that the system was intended to detect. The authors further 

argued that when determining the effectiveness of ML/DM methods, there are several criteria 

that one needs to take into consideration; the accuracy, complexity, classifying speed, and 

understandability of the final solution of the ML/DM method. Their study also highlighted the 

importance of data sets in ML/DM for cyber intrusion detection. Buczak and Guven (2016) 

reported that for effective anomaly or misuse detection, it is beneficial for IDS to be able to 

reach network and kernel-level data, if possible, network data should be augmented by OS 

Kernel-level data. Their study however only focused on previously conducted works to analyse 

the usability of ML/DM in the context of intrusion detection. This study takes this work further 
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by proposing an IDS method that utilises ML and conducts a performance evaluation of the 

system. 

In (Yuill et al., 2000) an intrusion detection technique to assist system administrators with 

intrusion detection problems encountered during incident response is proposed. The main goal 

was to identify the network devices that are likely to be compromised by an attacker. The 

authors proposed a solution based on the assumption that during an attack, the attacker reveals 

information about themselves and about the network vulnerabilities, which can be used to 

identify the networks likely compromised devices (Yuill et al., 2000). Based on the US military 

battlefield intelligence process, the authors constructed models of the network as a battlespace. 

They constructed models of the attackers’ capabilities, intentions, and course of action. They 

used the economies of crime, which is referred to as the theory behind criminal behaviour, to 

model the attackers’ course-of-action. Finally, the models of network and attackers were used 

to identify the devices that are more likely to be compromised (Yuill et al., 2000).  

In a recent study by Pushpa and Kathiravan (2016), a cross-layer based multiclass intrusion 

detection system for secure multicast communication of MANET in a military network was 

presented. The authors introduced an indirect internal stealthy attack by skipping the collision 

avoidance mechanism against the unicast route discovery control packets of tree-based 

multicast routing protocol MAODV. They then analysed the robustness of the MAODV against 

indirect and direct internal stealthy attacks such as black hole and deny-to-forward, where they 

observed severe impact in PDR, throughput, and control overheads (Pushpa and Kathiravan, 

2016). The authors then proposed a cross-layer based distributed Machine Learning anomaly 

detection system to protect against those stealthy attacks. They used MAC and routing layer 

integrated features instead of routing layer features alone to improve accuracy. The method 

presented high effectiveness for anomaly detection in military networks, however, their method 

is prone to high resource consumption and slow as it needs to collect data from different layers, 

such as the MAC and routing layer. Therefore, the present study envisions an intrusion 

detection approach that will only analyse flow-based data to reduce data collection and 

processing challenges. 

In (Rhodes et al., 2005), a maritime situation monitoring and awareness system using learning 

mechanisms was presented. Their system takes real-time tracking information and uses 

continuous on-the-fly learning which enables concurrent recognition of patterns of current 

states of single vessels in a local vicinity. Their learning system used a modified version of the 
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Fuzzy ARTMAP neural network classifier (Carpenter et al., 1992). In essence, the approach 

consisted of an unsupervised clustering algorithm and a supervised mapping and labelling 

algorithm (Rhodes et al., 2005). Their study illustrates the successful implementation of 

Machine Learning and AI in military settings. However, their implementation of Machine 

Learning techniques does not address communication security, instead, it focuses on vassal 

prediction. The present study applies Machine Learning to improve intrusion detection 

capabilities in military communication networks. 

Liu et al. (2018) proposed an SVM-based weighted learning limit learning machine based on 

extreme learning machine (ELM) to address the problems of large amounts of data, high-

security, and intrusion detection requirements in civil-military integration. The authors adopted 

an ELM mechanism since it is a fast learning method of a single hidden layer feedforward 

neural network, where the whole learning process is completed only once without iteration and 

resulting in extremely fast learning speed. In their approach, they first clarify the hidden layer 

of responsibility for each node, instead of tentatively setting the number of nodes required for 

the hidden layer like the original ELM, the number of nodes needed for a hidden layer is 

determined according to the classification purpose. Then SVM weight is used to optimise the 

weight and offset of each node. This ensures that each node has a better ability to complete the 

task of generalisation. The results obtained from their experiments indicate that SVM-ELM 

has higher detection accuracy and can quickly complete the training with superiority and 

stability compared to BP algorithm (Liu et al., 2018). The authors claimed that for data-based 

civil-military integration equipment support system construction, they recommend 

implementing their method of intrusion detection. However, their study used the DARPA 1999 

KDD dataset to assess their intrusion detection approach. Recent studies have argued that these 

datasets should no longer be used to evaluate intrusion detection methods because they are old 

and not a correct representation of modern network patterns (Gogoi, Bhuyan and 

Bhattacharyya, 2012). The present study will utilise a more recent intrusion detection 

evaluation dataset and network data sampled from a simulated tactical environment.  

Revathi and Malathi (2013) compared the effectiveness of five Machine Learning models, such 

as Random Forest, J48, Support Vector Machine, CART, and Naïve Bayes. They observed that 

Random Forest outperformed the other algorithms by achieving higher test accuracy than the 

others. In a survey (Haq, Onik and Shah, 2015), the authors argued that SVM and ANN 

algorithms are usually the most popular approaches proposed for single learning classification. 

In addition, AdaBoost and majority voting are the most popular ensemble classifiers for 
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intrusion detection. More recently, (Ertam, Õ and Yaman, 2017) compared Naïve Bayes, 

Bayesian Network, Random Forest, Multi-Layer Perceptron, and SOM for intrusion detection 

in computer networks. The authors found that MLP achieved high accuracy followed by 

Random Forest and Bayesian Network. The authors also reported that even though MLP 

achieved higher detection accuracy, the process of building the model for MLP took about 12 

hours, which is undesirable, so they recognised Random Forest and Bayesian Network as best-

performing in their study. 

ML has been successfully deployed in a number of military applications, for example, 

surveillance and underwater mine warfare (Svenmarck et al., 2018). However, for security 

applications, ML-based IDSs have been proposed and studies analysed their performance using 

datasets. Evidence of increased classification accuracy of attacks and automated model 

construction was reported. With those attributes, the adoption of ML techniques to enforce 

security in military tactical networks becomes an obvious choice since it can ensure perfect 

detection and recognition totality in such networks. However, most studies propose ML for 

intrusion detection without demonstrating how such systems can be operationalised. This study 

focuses on finding the most suitable ML algorithm then designing and implementing an IDS 

utilising such an algorithm to demonstrate the operationalisation of such a system. This will 

ensure that ML algorithms are not only recommended as better-performing using datasets but 

also consider their performance from a deployment point of view.  

2.3.2. Software-Defined Network-based 

NIDS 

Since SDN can facilitate dynamic policy control of a network, (Spencer et al., 2016) argued 

that this can help establish services automatically based on policy, reduce planning overheads, 

reduce the operator burden and configuration errors. They also reported that network resources 

allocated to each service and the path taken through the network by the service’s traffic can be 

dynamically controlled through SDN. This implies that network resources can be focused on 

mission goals even as mission priorities change(Spencer et al., 2016). For example, (Ji Qing et 

al., 2015) Proposed a flattening military network resource management framework that was 

based on Software-defined Networking (SDN) technologies, Figure 2.4. 
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Figure 2.4 Resource management framework with SDN control (Ji Qing et al., 2015) 

The authors modelled the relationship between military operations and further proposed a pre-

combination service component-based resource optimisation method. Their simulation results 

indicated that their method improves the average response time for service requests. In their 

study, the authors focused on addressing network management issues in tactical networks 

(Spencer et al., 2016). Their work further demonstrated the effectiveness of SDN in terms of 

logical controlling, where network services can be centrally managed and configured (Spencer 

et al., 2016). This study extends the presented work by utilising SDN central logical controlling 

capabilities for network intrusion detection and mitigation as opposed to resource management. 

Researchers in security have also investigated the use of SDN-enabled techniques for intrusion 

detection and mitigation, (Alsmadi and AlEroud, 2017) (Chang et al., 2013) (Monshizadeh, 

Khatri and Kantola, 2017) (Yoon et al., 2015) (Boero, Marchese, and Zappatore, 2017).  

Bhunia and Gurusamy. (2017) proposed an SDN-based framework called SofThings for the 

detection of anomalies and mitigation of anomalies in IoT traffic. The objective of the 

framework was to achieve early detection of traffic anomalies closer to the edge of the network 

instead of detection at the core or higher levels of the network. This enabled fast identification 

of attacks on IoT devices and the initiation of mitigation procedures as appropriate. In the study, 

the Support Vector Machine (SVM) Machine Learning algorithm was used to detect anomalous 

traffic. Precision and recall were the two performance metrics used to measure the performance 

of the framework. From the results of the study, the authors observed a few false-positives 
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when linear SVM was used, hence obtaining lower precision of detection. They further 

observed that when using non-linear SVM they obtained better precision. This was because 

non-linear SVM uses the Kernel trick and consequently reduces wrong detection. In addition, 

they also reported that their method can quickly restore the throughput loss, and is hence able 

to mitigate different attacks within a few seconds. In this study, we employed a similar 

approach; that is, adopt both SDN and machine learning to design an IDS. However, instead 

of focusing on IoT scenarios, our study took into consideration the tactical military network 

scenarios.  

The work of (Kidston et al., 2010) proposed a cross-layer framework to help solve network 

security issues in tactical networks. The framework supports automation and efficiency which 

is very useful in tactical networks. The framework proposed by the authors promotes the 

coordination of security services across the different communication layers. It was influenced 

by the fact that by taking metrics from the security services at one layer, for example, the 

authentication system and IDS, operations at other layers can be made more secure or optimised 

(Kidston et al., 2010). For example, authentication and IDS operating at the application layer 

can provide real-time attack profiles into an integrated cross-layer security service. These 

results can then be passed to the other lower layers to improve their efficiency and robustness. 

However, this method increases the complexity and internal processing within a node, also 

increasing the communication requirements between nodes. The authors argued that security 

services that can be integrated using their framework include IDS, frequency hopping, and 

distributed authentication.  

Wrona and Szwaczyk. (2017) argued that SDN networks offer a promising framework for the 

implementation of cross-layer data-centric security policies in military communication 

systems. They argued that one of the most important aspects of designing advanced security 

solutions is thorough experimental assessment and validation of proposed technical concepts 

prior to deployment in operational military systems. In their work, they proposed an OpenFlow 

based testbed for validating SDN security mechanisms. Their method can handle both 

mechanisms for protecting the SDN layer and data-centric security policies. The results 

obtained in their study confirmed their method’s ability to validate simulation and analytic 

predictions. 

In a study by Giotis et al. (2014) a scalable mechanism for performing anomaly detection and 

mitigation in SDN architectures is proposed. The mechanism is comprised of a) reduced data 
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gathering with sampling being handled by the sFlow protocol, b) Anomaly detection, which 

was implemented by an entropy-based algorithm, and c) network-wide anomaly mitigation 

using OpenFlow. The authors further demonstrated that OpenFlow statistics collection and 

processing introduced scalability issues since it overloads the centralised control plane. They 

also argued that in low traffic environments, the performance of their mechanism was 

comparable to the native OpenFlow implementation. Moreover, they stated that in terms of 

resource usage, the proposed sFlow based approach presented superior behaviour compared 

with the native OpenFlow mechanism. Taking into consideration the lack of resources in 

tactical devices, this study will use sFlow sampling to ensure efficiency instead of the native 

OpenFlow sampling mechanism.  

In (Sultana et al., 2018) a survey with the overview of programmable networks, such as SDN, 

and various Machine Learning (ML)/ Deep Learning DL approaches were presented. The 

survey presented different challenges experienced while developing a flexible and efficient 

NIDS using ML/DL based techniques (Sultana et al., 2018). The authors reported that one of 

the most predominant challenges is choosing the appropriate feature selection methods that can 

precisely determine relevant features for the IDS. They also argued that the existing dataset is 

not accurate for research and academic predictions. This issue makes it essential for researchers 

to create datasets to ensure consistent and accurate evaluation of NIDS. Another fundamental 

challenge of SDN-based NIDS presented by the authors was how to handle the processing of 

a high volume of data. 

The study conducted by Sultana et al. (2018) also argued that to design a centralised SDN 

controller that can monitor and implement real-time intrusion detection in high-speed networks 

is a desired future goal that will be challenging to address. However, since this work proposes 

a flow-based intrusion detection method, it is capable of providing real-time network security 

solutions in high-speed networks. This is because the proposed method analyses network flows, 

which contains the summary of the packet header and not the packet payload as traditional deep 

packet inspection approaches do.  

The work of Giotis et al. (2014) proposed a mechanism utilising sFlow for data gathering and 

sampling instead of the native OpenFlow protocols. This work adopts a similar approach. We 

employ the sFlow protocol for data gathering and sampling on top of SDN. This reduces 

processing overload and scalability issues in the control plane (Giotis et al., 2014). This 

approach also has the potential to address the challenge of handling packet processing flows, 

as mentioned by (Sultana et al., 2018). 
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2.4. Summary 

Security requirements for tactical networks range from transmission security, communication 

security, authentication and access control, network infrastructure protection, and others. This 

study focusses on network infrastructure protection as a second line of defence in addition to 

encryption techniques used to address transmission, authentication, and communication 

security. To address NIP, one of the most effective solutions is network intrusion detection 

systems. Over the years, different intrusion detection techniques have been proposed which 

include the use of rule-based, statistical, and ML-based techniques. However, the environment 

and the nature of tactical networks present challenges to intrusion detection techniques. The 

implementation of intelligent security solutions in such networks requires add-on mechanisms 

that can allow logically centralised management for effective provisioning of security services 

(Spencer et al., 2016) and an intelligent intrusion detection method that can detect malicious 

activities with high detection rates and presents minimal false detections. 

In this chapter, an overview of network security, intrusion detection, and different challenges 

experienced in tactical network security was presented. This chapter further reviewed different 

works proposing intrusion detection systems that use ML as the detection method. The works 

reviewed indicated that it remains unclear which ML algorithm can perform better or can 

achieve higher accuracy in detecting hostile attacks in tactical networks. Different approaches 

have been proposed and evaluated by other researchers, however, most of their evaluations are 

conducted using outdated datasets (very old) and there is no evidence of actual deployment of 

these techniques to validate their performance in their respective production environments.  

Furthermore, the lack of centralised management for effective provision of security services 

led to the investigation of SDN and its advantages in addressing IDS requirements in tactical 

networks. Different works proposing intrusion detection techniques that use SDN for intrusion 

detection were also reviewed. The review indicated that SDN can effectively and efficiently 

gather network data in real-time and globally for IDS to ensure timely and quick identification 

of network security breaches.  From this chapter, we find evidence that an effective IDS for 

tactical MANETs can be constructed using SDN capabilities and ML techniques integrated to 

develop an intelligent IDS that can monitor and detect intrusions effortlessly without any 

human intervention. 
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Chapter 3: Research Design and 

Methodology 

As mentioned in Chapter 1, this study aims to address the problem of intrusion detection in 

tactical military networks. Military tactical networks are usually resource-constrained and 

deployed in harsh environments where network communications are not stable due to different 

terrains types. In that regard, security approaches such as Intrusion Detection Systems (IDS) 

deployed in this network usually suffer from high false detection rates due to constant changes 

and mobility in the network. In addition, detection and handling of security incidents doesn’t 

happen as quickly and efficiently as possible, which has a negative impact on the functioning 

and availability of the network. The goal of the study is, therefore, to investigate and implement 

the most suitable Machine Learning (ML) algorithm for intrusion detection while utilising SDN 

to improve network security in tactical mobile ad hoc networks. 

In this Chapter, different Computer Science and Information Systems (CS/IS) methodologies 

that can be adopted by a researcher for their study are presented. A review of theoretical, 

Simulation, Experimentation, Case Study, and Design Science was conducted in order to 

determine the most effective method for this study.  Due to the objectives and goal of this study, 

Design Science and Experimentation were the most appropriate methods to use. This study 

required that experiments be conducted to determine the most effective ML technique in 

detecting intrusions, which influenced the selection of experimentation methodology. Also, in 

accordance with the third research objective, the Design Science method was the most 

appropriate to facilitate the design and development of the IDS for tactical networks as it 

ensures a rigorous process to design an artefact intended to solve an observed problem (Hevner 

et al., 2004), which is intrusion detection in this study.  

Furthermore, the use of ML techniques requires that ML models be constructed and validated 

before they can be integrated and deployed. To facilitate this process, the data science project 

life-cycle was used. The data science project life-cycle contains steps and guidelines to ensure 

the development of quality and effective ML models, discussed in Subsection 3.2.3. To 

evaluate the IDS, instead of accuracy, the most-used metric for evaluating IDS models, the 

precision, recall, f-score, and AUC metrics were used since they are independent of the 

“accuracy paradox” (Boutaba et al., 2018). These metrics are described in Subsection 3.2.4.  
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3.1. Research Methods Overview 

Good quality research mainly focuses on the approach taken to address the problem under 

investigation, and the ability to document and demonstrate that the research findings can be 

reproduced. Moreover, research, in general, must have a sound basis in existing knowledge and 

theory to ensure that research was conducted. 

“…research is used to refer to the activity of a diligent and systematic inquiry or investigation 

in an area, with the objective of discovering or revising facts, theories, applications, etc. the 

goal is to discover and disseminate new knowledge.” (Ayash, 2014) 

Research in the field of Computer Science (CS) and Information Systems (IS) is usually 

conducted through the application of one or more research methods. (Ayash, 2014) recognised 

three popular research methods for CS and IS namely: theoretical, simulation, and experimental 

methods. Other methods include Design Science (Herver et al, 2004), case study (Demeyer, 

2011)(Yin, 1994), and surveys (Pfleger and Kitchenham, 2001).  

1. Theoretical Simulation 

Theoretical research methods are based on classical methodologies since they are related to 

mathematics and logic. This method is devoted to the algorithm analysis and design to discover 

solutions or to improve existing solutions. Within all the fields in CS, this method attempts to 

explain the limitations of computation and the computational paradigms. For example, 

theoretical methods are used to model a new system, and it can help in the discovery of theories 

and new mathematical models. However, theoretical methods may still use other methods to 

demonstrate the efficiency of new theories or models (Ayash, 2014).  

2. Simulation 

Simulation methods are commonly used in the CS domain since they offer the opportunity to 

explore systems that are external to the experimental domain or system that is under 

development or construction. This may include complex occurrences that cannot be realised in 

a laboratory. Domains that usually adopt simulation include, Astronomy, Physics, Economics, 

and specialised areas such as, the study of artificial life, virtual reality, or non-linear systems 

(Ayash, 2014). 

3. Experimentation 
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The experimentation method refers to the task of conducting experiments that will occur in 

order to acquire results from real-world implementation. Experiments are commonly used to 

test veracity and theories. CS fields that usually adopt experimentation methods include, ANN, 

natural languages, automating theorem proving, and analysing performance and behaviours 

(Ayash, 2014).  

4. Case Study 

A case study is an empirical inquiry that investigates a contemporary occurrence within a real-

life context. It is commonly used when the limitations between the occurrence and context are 

not clearly evident (Demeyer, 2011).  

5. Design Science 

Design Science (DS) is a method that strives to extend the limitations of human and 

organisational abilities by creating new and innovative artefacts (Hevner et al., 2004). The 

Design Science research methodology incorporates, practices, procedures, and principles 

necessary to carry out the research with three main objectives: it is consistent with past 

literature, it offers a nominal procedure model for undertaking research, and it provides a 

mental model to present and evaluate the research. The frame work of DS as presented by 

Herver et al.(2004) is hwon in Figure 3.1. 

 

Figure 3.1. Information System DS Research Framework (Hevner et al., 2004) 
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3.2. Method Selection 

In this research, the aim is to investigate and implement an ML-based intrusion detection 

system in an SDN-based tactical MANET. While conducting research it is important to ensure 

that the select methods align with the objective of the study. This research adopted two research 

methods in accordance with the research objectives described in Chapter 1. The first method is 

the Experimental method. This method was the most appropriate for evaluating different ML 

algorithms as it provides quantitative properties which can be processed and analysed. This 

also make it easier to compare the ML performance for suitability in intrusion detection tasks. 

The second method selected was the Design Science (DS) methodology. DS was adopted 

because it offers an important paradigm for conducting applicable and yet rigorous research. 

This approach allow the development, implementation and evaluation of a proposed system. In 

this study, DS research methods were used to facilitate the development and evaluation of the 

proposed IDS model for tactical networks. In the following Subsections, how the two selected 

methods will be used in this study is described.  

3.2.1. Experimental Method 

This study aims to design a Machine Learning-based IDS for SDN-based tactical MANETs. 

Machine Learning (ML) techniques have demonstrated applicability in solving intrusion 

detection problems. Due to a large number of available ML algorithms, it remains unclear 

which algorithms are suitable for intrusion detection. Hence, it is important to investigate and 

find a better-performing machine learning algorithm that can be adopted for classifying 

network traffic as normal or malicious. In this study, performance evaluation of ML 

classification algorithms is required in order to identify the most suitable machine learning 

technique for intrusion detection in tactical MANETs. Considering this objective, the 

experimental method stands out as the best-fitting option.  

3.2.2. Design Science Method 

To accomplish the goal and objectives of this study, the Design Science methodology was 

adopted. Design Science was suitable because this work intends to develop a model, therefore 

DS was a natural choice. DS provides the researcher with an overarching, guiding framework 

for addressing a complex problem since it involves a rigorous process to design an artefact to 

solve observed problems, to make research contributions, to evaluate the designs, and to 

communicate the results to the appropriate audiences (Peffers, Tuunanen, Rothenberger, & 
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Chatterjee, 2007). To ensure that all the DS criteria are met, seven guidelines were presented 

by Hevner et al. (2004). This study applied these guidelines as depicted in Figure 3.2.  

 

Figure 3.2. Application of Design Science guidelines and research processes 

3.2.3. Data Science Method 

In Design Science, the produced artefact should be a product of rigorous methods (Hevner et 

al., 2004). In this study, the data science methodology, also known as the data science life-

cycle shown in Figure 3.3, was used to facilitate the construction of the machine learning 

classification models used to classify network flow data in the proposed IDS. The data science 

method was chosen because the study seeks to address a data science problem. However, it was 

used as a sub-method under the DS methodology. 
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Figure 3.3 Data Science work cycle (Zumel and Mount, 2014) 

The data science methodology is composed of different steps that need to be executed to ensure 

the delivery of an effective Machine Learning predictive or classification model. The steps 

involved are presented below; 

1. Defining the goal 

Defining the goal of the project forms the most important phase in any project. It is important 

to define a quantifiable and measurable goal. This phase is concerned with defining state-of-

the-art methods used to solve the problem and limitations in the applied methods.  

2. Collecting and Managing Data 

After defining the goal of the project, the next important phase is data collection. The data 

collection encompasses the identification of the required data, exploring it, and preparing it to 

be appropriate for analysis. Reports suggest that this step is the most time-consuming over the 

other processes. In order to achieve our goal, network data is required for building a classifier 

capable of classifying normal and malicious activities. in this study network flow data is used 

for intrusion detection. As mentioned in the previous sections, monitoring network flow data 

for intrusion detection tends to be more effective than the analysis of complete network packets 

due to a number of reasons. the network flow data can take two possible labels: Normal and 

malicious. Labelling of the data is important for classifying and learning the different 

characteristics of each flow type.  
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3. Build Model 

This stage employs statistics and Machine Learning for modelling, this is where useful insights 

from the data are extracted to achieve our goal. Usually, there is an overlap and back-and-forth 

between this modelling stage and the data cleaning stage. This is due to trying to find the best 

form and way to represent the data to model so it can produce better results. 

4. Evaluate and Critique Model 

At this stage, we have a model, yet it is time to determine if it meets our goal. The important 

questions to consider are: 

1. Is the model precise and sufficient for our needs? Does it generalise well? 

2. Does the model perform better than random guessing? Is it better than the method 

currently in use? 

3. Do the obtained results make sense from the perspective of the investigated problem 

domain? 

It is important that one answers yes to all these questions. If not, one should loop back to the 

modelling step or decide which of the different data attributes to check and choose more 

appropriate attributes. To evaluate our classifier the evaluation metrics presented in Subsection 

3.2.4 and the confusion matrix, which tabulates the actual classifications against the predicted 

classifications, were used.  

5. Present Results 

After a back-and-forth loop of model development and evaluation is completed, and the 

envisioned model is realised, then the documentation of the model is conducted. Such 

documentation is dedicated to helping those who will deploy the model, hence be liable for 

using, running, and maintaining the model. Basically, the important things to document are 

how the model detects network intrusions, and how the end-users will use the model to achieve 

secure networks. 

6. Deploy Model 

The last stage of the cycle is putting the model into operation. This study implements the 

intrusion detection model in a wireless SDN-based tactical network, upon deployment, 

evaluating the effectiveness of the model using evaluation metrics presented in the next section. 
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3.2.4. Evaluation Metrics 

Evaluation metrics allow one to evaluate and validate prediction or classification models. The 

objective is usually to determine how well a model performs in terms of classification or 

predicting a particular variable. The most common evaluation metric used to validate 

classification models is Accuracy. Accuracy is defined as the proportion or ratio of correct 

predictions among the total number of predictions.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑝

𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Where 𝑇𝑝 is the true predictions for each class, N is the total number of predictions. While 

accuracy can be a useful metric for ML model validation, in some cases it has its limitations 

(Boutaba et al., 2018). This issue is known as the “Accuracy Paradox”. The Accuracy Paradox 

states that a “predictive model with a given level of accuracy may have greater predictive power 

than models with high accuracy”. 

Another important measure to be considered for model performance evaluation is the model's 

capabilities in identifying positive cases. This metric is known as the True Positive Rate (TPR) 

or Recall and is defined as the number of true positives divided by the number of true positives 

plus the number of false negatives.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where true positives (TP) are the positive data points predicted as positive by the model and 

false negative are the data points the model identified as negative that are actually positive. 

Recall can also be regarded as the model’s ability to find all the data points of interest in a 

dataset. 

The Precision, which is defined by the number of true positives divided by the number of true 

positives plus the number of false-positives, will also be used.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision can be considered as a measure of the ability of the classification model to identify 

only the relevant data points. While Recall measures the ability to find all relevant instances in 

the dataset, Precision expresses the proportion of the data points regarded by the model as 
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relevant that are actually relevant, the F1 score defines the harmonic mean of both Precision 

and Recall, with the equation: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Another important technique for evaluating a classification model is the Receiver Operating 

Characteristics (ROC) curve. The ROC curve plots the true positive rate (TPR) on the y-axis 

and the FPR on the x-axis, where the TPR is the recall, and FPR is the probability of false 

detection. However, since the ROC curve aids in visual analysis, it can be quantified by 

calculating the total Area Under the Curve (AUC). AUC is a metric that falls between 0 and 1 

and is defined as the measure of the probability of confidence in the model to accurately predict 

positive outcomes for positive instances. The presented evaluation metrics are used to measure 

the effectiveness of the proposed IDS technique. 

3.3. Summary  

To achieve the aim of this study, the Design Science (DS) and Experimentation research 

methodologies were used. DS was used because it necessitates the application of rigorous 

methods in both the construction and evaluation of the designed artefact (Hevner et al., 2004). 

This chapter presented an overview of different IS/CS research methodologies and the most 

applicable methods to this research were selected and further described. Thus, the study utilised 

the Design Science (DS) and Experimentation methods. The DS methodology was chosen 

because it provides guidelines to facilitate an artefact construction and evaluation in addressing 

an important business or organisation problem. In addition, the Experimentation method was 

selected due to the nature of the evaluation approach used to evaluate NIDS. Moreover, because 

the solution proposed in this study uses ML techniques, the Data Science project life-cycle 

process was adopted to facilitate the development and evaluation of the ML classification 

models used in the proposed IDS. Finally, the chapter presented the evaluation metrics that will 

be used to evaluate the efficiency of ML algorithms and the IDS proposed in this study. 
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Chapter 4: Performance Evaluation of ML 

Techniques for ID 

Although ML techniques have been around for a long time, finding a way to use them 

efficiently and in real-time is a new trend (Zaman, 2018). Recent approaches in intrusion 

detection have applied Machine Learning to improve detection rates (Buczak and Guven, 2016) 

(Vijayanand, Devaraj and Kannapiran, 2018) (Dunning and Friedman, 2014). However, due to 

the large number of available ML algorithms, it remains unclear which algorithms are suitable 

for intrusion detection.  

In that regard, this chapter explores and conducts a performance evaluation of different ML 

algorithms for the task of intrusion detection to find the better-performing in terms of detection 

rate and detection speed. Hence, this chapter addresses the second research objective, which is 

to find the most suitable ML method for intrusion detection in tactical networks. The first 

section presents the evaluation datasets used to carry out the experiments. To ensure that the 

results are accurate and usable, recent datasets such as UNSW-NB15 and CIDDS-001 were 

used instead of the KDD-CUP benchmark dataset. The choice of datasets was influenced by 

the number of issues and limitations of the KDD-CUP dataset presented by other researchers 

(Gogoi, Bhuyan and Bhattacharyya, 2012) (Moustafa, Slay and Technology, 2015). Section 

4.2 presents the experimentation and performance evaluation of popular supervised ML 

algorithms in intrusion detection tasks. The first experiment uses packet-based datasets while 

the second experiment uses flow-based datasets, this is important to determine which technique 

yields better performance in packet and flow-based data. The result analysis (Section 4.3) 

indicates that ML algorithms perform better in flow-based data, achieving minimum model 

build and test time. In addition, it was also observed that ensemble learning techniques using 

Decision Tree as their base methods perform better than methods utilising probabilistic and 

non-probabilistic techniques. Finally, the concluding remarks are presented in the last section 

(Section 4.4).  

4.1 Evaluation Datasets 

ML techniques require data to train and test their efficiency. All algorithms used in this work 

are supervised Machine Learning algorithms, which means they do not only require data but 
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data that is labelled. The most dominant among them is the KDDCUP99 dataset. The 

KDDCUP99 is a derivative of the DARPA98 network traffic dataset, which is a popular 

benchmark dataset used in the International Knowledge Discovery in Databases (KDD) 

competition.  

From literature, the most used datasets for evaluating IDS performance are the benchmark 

network intrusion KDD-CP 99 and NSL-KDD datasets (Ertam, Õ, and Yaman, 2017), (Revathi 

and Malathi, 2013), (Haq, Onik and Shah, 2015). Those datasets originate from the Lincoln 

laboratories at MIT University. However, recent studies perceived that using those datasets does 

not reflect realistic output performance. The works of (Gogoi, Bhuyan and Bhattacharyya, 2012) 

and (vasudevan2011ssenet) argued that the KDD-CP 99 datasets contain a large number of 

redundant records in the training set. There are also reports of multiple missing records which 

are a factor in changing the nature of the data. In addition, in the NSL-KDD datasets which are 

an improved version of the KDD-CP 99 dataset, (Moustafa, Slay, and Technology, 2015) 

claimed that the datasets do not comprehensively represent a modern low footprint environment. 

Recently, other datasets have been proposed as a benchmark dataset for IDS evaluation (Markus 

Ring et al., 2017) (Gogoi, Bhuyan and Bhattacharyya, 2012). These datasets ameliorate the 

shortcomings of KDD-CP 99 datasets because they represent modern network behaviours. In 

(Moustafa, Slay and Technology, 2015) the UNSW-NB15 network intrusion detection dataset 

is proposed. The UNSW-BN15 network dataset is a hybrid of modern normal and abnormal 

network traffic created using the IXIA PerfectStorm tool at the Cyber range lab of the Australian 

Centre for Cyber Security (ACCS). The UNSW-NB15 network dataset is made up of nine 

different families of attack instances. In (Markus Ring et al., 2017) the authors proposed the 

CIDDS-001 dataset which is a labelled flow-based dataset containing unidirectional NetFlow 

data (Verma and Ranga, 2018). The dataset consists of data extracted from an OpenStack 

environment with internal servers and an external server that is deployed on the internet to 

capture real and up-to-date traffic.  

In this study, the UNSW-NB15 and CIDDS-001 datasets were used to evaluate and determine 

the better performing ML algorithm. The UNSW-NB15 dataset was used since it is one of the 

most recent packet-based datasets, containing a broad range of network packet attributes. To 

evaluate flow-based prediction on the algorithms, the CIDDS-001 dataset was also used as it is 

recent, easily accessible, and contains a range of attacks.  
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4.1.1. UNSW-NB15 Dataset (Moustafa, Slay 

and Technology, 2015) 

The UNSW-NB15 dataset is a fairly recent packet-based dataset that contains a hybrid of real 

modern normal and synthetical abnormal network traffic from a synthetical environment at the 

UNSW cybersecurity lab. The UNSW-NB15 dataset represents nine major families of attacks 

achieved by utilising the IXIA PerfectStorm tool. It contains 49 features that were developed 

using Argus and Bro-IDS tools and twelve algorithms that cover characteristics of network 

traffic. The dataset was adopted because it reflects modern traffic patterns since it was generated 

more recently when compared to the benchmark dataset, KDD-CUP 99., the UNSW-NB15 

network dataset distribution is presented in Table 4.1. see (Moustafa, Slay and Technology, 

2015). 

Table 4.1. UNSW-BN15 network dataset distribution 

Type 
Number of Instances 

Training Testing 

Normal 37 000 56 000 

Fuzzers 6 062 18 184 

Backdoors 583 1 746 

Analysis 677 2 000 

DoS 4 089 12 264 

Exploits 11 132 33 393 

Generic 18 871 40 000 

Reconnaissance 3 496 10 491 

Shellcode 378 1 133 

Worms 44 130 

Total 82 332 175 341 

 

4.1.2. CIDDS-001 Dataset (M Ring et al., 

2017) 

The CIDDS-001 dataset is a labelled flow-based dataset generated by emulating a small 

business environment in the OpenStack Software platform and capturing the generated network 

traffic of virtual machines in unidirectional NetFlow format over a period of 4 weeks. The 

Network flow traffic was recorded in flow-based format instead of packet-based format to 
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bypass the problem of encrypted connections. The normal traffic was generated by executing 

Python scripts on the clients which follow some self-defined guidelines, while the malicious 

traffic was generated by explicitly executing Ping-scans, Port-scans, Brute-force, and DoS 

attacks within the OpenStack environment. Other malicious traffic was captured from a server 

that was exposed to real and up-to-date attacks from the internet. containing unidirectional 

NetFlow data (Verma and Ranga, 2018). Table 4.2. presents the overview of attacks within a 

specific week within the CIDDS-001 dataset. 

Table 4.2 Overview of attacks within the CIDDS-001 Dataset (Markus Ring et al., 2017) 

OpenStack External Server 

 PortScan PingScan DoS BruteForc PortScan PingScan DoS BruteForc 

Week 

1 

16 10 11 5 0 0 0 0 

Week 

2 

8 6 7 7 2 0 0 4 

Week 

3 

0 0 0 0 5 0 0 7 

Week 

4 

0 0 0 0 1 0 0 3 

 

4.2. ML Techniques Performance Evaluation 

This section presents a performance analysis of different ML techniques to determine the most 

effective in terms of its ability to find all the data points of interest and its ability to identify 

only the relevant data point in the dataset. 

4.2.1. ML Classifiers in Packet-based dataset  

Classification is defined as a simple task in data analysis and pattern recognition that 

necessitates the creation of a classifier, which is, a function that assigns a class label to instances 

described by a set of attributes (Friedman et al, 1997). In the experiment, seven machine 

learning classifiers are considered. Multi-Layer Perceptron, Bayesian Network, Support Vector 

Machine (SMO), AdaBoost, Random Forest, Bootstrap Aggregation, and Decision Tree (J48). 

To conduct a performance analysis of the classification algorithms, WEKA version 3.8 was 

installed on a Windows 10, Intel(R) Core i7-6700 CPU @ 3.40GHz machine, with 8 GB RAM. 

The dataset used for the evaluation is the UNW-NB15 network dataset proposed by (Moustafa, 

Slay and Technology, 2015). The classifiers are used to train intrusion detection models using 

a training set with 82,332 instances and tested using 175,341 unknown instances. The dataset is 
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loaded to the WEKA tool. Data pre-processing is used to restructure and remove features that 

may cause overfitting or no information gain. The training and testing sets contain 45 attributes 

each, which include two types of labels; original Class labels such as 0 for normal and 1 for 

abnormal and attack_Category labels where each abnormal instance is labelled based on attack 

type, see Table 4.1. Thus, in this experiment, we use pre-processing tools to remove the 

attack_Category label and the instance ID to avoid data overfitting. Therefore, we remain with 

43 attributes with 0 and 1 as our labels in our final evaluation dataset. The experiment was 

repeated 6 times for each classifier, and the average was used to ensure consistency. 

4.2.2. Results  

Table 4.3. presents the True Positive Rate (TPR), False-Positive Rate (FPR), and Area Under 

ROC Curve (AUC) of each classifier model using two-class labels (Normal and Attack). It is 

important to note that the higher the TPR, the fewer positive data points missed. Therefore, 

classifiers that achieve higher TPR are preferred over the ones that generate lower TPR. From 

the results above, MLP, AdaBoost, Random Forest, and Bagging generated higher TPR. For 

intrusion detection in TWN, a classifier with high TPR is required so as to correctly classify 

malicious traffic in the network. From Table 4.3 we observe that multilayer perceptron missed 

fewer positive data points, achieving TPR of 0,933. The second is AdaBoost with 0,903, random 

forest at 0,902 and bootstrap aggregation at 0,901. The remainder of the classifiers achieved 

TPR of less than 90 %.  

Table 4.3. Classifier TPR, FPR, AUC 

Classifier 
Experimentation values 

TPR FPR AUC 

Multilayer-Perceptron 0.933 0.142 0.951 

AdaBoost 0.903 0.087 0.968 

Random Forest 0.902 0.057 0.981 

Bagging 0.901 0.057 0.952 

J48 0.887 0.069 0.952 

SMO 0.882 0.073 0.905 

Bayesian Network 0.809 0.123 0.965 
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The second important performance metric is the FPR. A higher FPR indicates that more negative 

data points are misclassified by the classifier. Multilayer perceptron has higher FPR followed 

by the Bayesian Network, this demonstrates that those two classifiers can produce more false-

positive predictions than the other classifiers. Therefore, using those classifiers for intrusion 

detection in TWN is not recommended. For example, consider a dataset with two classes, 

positive and negative. If the data has one category overwhelming the majority of the data points, 

then the data is skewed class-wise. In this case, the data is imbalanced as one class has many 

data points from the other. Thus, accuracy is not reliable in such cases because if a dataset has 

15 positive points and 5 negative points, correctly predicting all the positive points and failing 

to correctly predict any negative point yields accuracy of 75%. In this case, accuracy is not a 

good measure to assess model performance. This issue is usually referred to as the Accuracy 

Paradox. 

When we consider the FPR, Multilayer Perceptron has a higher FPR followed by the Bayesian 

Network, with 0.142 and 0.123 respectively. We observe that the other classifiers have an FPR 

of less than 0,1. AUC is one of the most important metrics to measure classifier performance.  

The last detection metric that can be used to measure detection performance is the AUC. As 

observed in the above subsection, Bootstrap, random forest, and AdaBoost achieved higher 

AUC. Hence these classifiers are suitable for implementation for intrusion detection. While TPR 

and FPR are important, it is important to consider the AUC as the best measure for selecting an 

ML classifier for TWN. Table 4.3 shows that all the models achieved AUC above 0.9. However, 

Bootstrap aggregation has the highest AUC (0.986), followed by Random forest at 0.981, and 

AdaBoost at 0.968.  

The time for training a model is an essential factor due to the ever-changing cyber-attack types 

and features. Hence, anomaly detectors need to be trained frequently or incrementally, with 

fresh malware signature updates.. Multilayer-Perceptron (MLP) took longer to build the model, 

followed by SMO. MLP took about 24 hours to train, followed by SMO with an average of 9 

minutes. Random forest and Bootstrap Aggregation with a build time of 28,68 sec and 18,86 

secs follow. The remainder of the list is all bellow 10 seconds, as shown in Table 4.4. 

Table 4.4 Classifier Build and Test time in seconds 

Classifier 
Time in seconds 

Build (sec) Test (sec) 

Multilayer-Perceptron 86303.22 14.35 
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Classifier 
Time in seconds 

Build (sec) Test (sec) 

AdaBoost 9.02 1.06 

Random Forest 28.68 4.91 

Bagging 18.86 1.19 

J48 8.08 1.02 

SMO 541.88 1.44 

Bayesian Network 2.56 1.63 

When we consider test time, the Multilayer Perceptron takes more time, 14,35 seconds, followed 

by random forest, 4,91 secs. The remainder of the algorithms were able to test their models in 

below 2 secs, shown in Table 4.4. 

On the other hand, the time to classify a new instance is an important factor that reflects the 

reaction time and the packet processing power of the intrusion detection system. Hence from 

the results, we observe that MLP can present challenges for real-time intrusion detection in 

TWN. This is due to a large amount of time required to build and test the MLP classifier. 

From the obtained results, Random Forest, Bagging, AdaBoost, and J48 are the best performers 

in terms of TPR, FPR, and AUC. It should be noted that 3 of these classifiers are ensemble 

classifiers. In Addition, AdaBoost, Bagging, J48, and Bayesian Network classifiers, are much 

faster in building and testing their model.  

4.2.3.  ML Classifiers in Flow-based dataset 

This subsection presents a performance evaluation of ensemble learning methods using flow-

based data. This is because ensemble Machine Learning methods have distinguished 

themselves as exceptional detectors of malicious and anomalous actions in intrusion detection 

in both computer systems and networks. Ensemble methods demonstrated better performance 

when compared to single and hybrid ML methods in terms of detection accuracy, as observed 

from the performance analysis conducted in the previous subsection. Thus, three representative 

learning methods that are widely used for classification problems are used as the base machine 

learning methods for the ensemble methods. The base methods utilised are; Decision Tree 

(DT), Support Vector Machine (SVM), and Naïve Bayes (NB). 
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The experiment is conducted on a 1.80GHz Intel (R) Core i7 processor with 8 GB RAM. 

Python 2.7 and Scikit-learn version 0.20 installed on Ubuntu 16.04 mate Operating system. 

The performance analysis is conducted using the CIDDS-001 flow-based network intrusion 

detection datasets (Markus Ring et al., 2017). The dataset consists of 14 attributes, where 1-10 

are the NetFlow default attributes, and attributes 11 – 14 are attributes added during the 

labelling process. This study utilised 11 attributes for the ensemble learning evaluation since 

those attributes can be sampled from any simulation tool with ease. Also, only week 1 of the 

dataset (see Table 4.2) was used since it contained more attacks than the other weeks. CIDDS-

001 dataset attributes shown in Table 4.5. 

Table 4.5 CIDDS-001 network intrusion datasets attributes 

No Attributes Attribute Description Subhead 

1 Src_IP_Addr Source IP address 

2 Dst_IP_Addr Destination IP address 

3 Src_port Source port 

4 Dst_port Destination port 

5 Proto Transport protocol 

6 Date_first_seen Start time flow first seen 

7 Duration Duration of flow 

8 Bytes Number of transmitted bytes 

9 Packets Number of transmitted packets 

10 Flags OR concatenation of all TCP flags 

11 Class Class label 

12 Attack_type Type of attack 

13 AttackID Same attack class carry same attack id 

14 Attack_description Additional information about attack parameters 

 

4.2.4. Results  

Table 4.6 shows the measures of the base classifiers and when used in the ensemble methods. 

The better-performing classifier in terms of detection accuracy is the Decision Tree (DT) 

classifier and random forest (RF) classifier, with an accuracy of 99.09 % and 99.14 % 

respectively. The probabilistic algorithm, Naïve Bayes (NB), obtained the worst performance, 
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with an accuracy of 60.56 %. Majority voting performed slightly better than SVC, with an 

accuracy of 63.44 %. While considering the base classifiers in terms of accuracy, the DT-based 

classification method demonstrates better performance when compared to the other methods.  

Table 4.6. Evaluation results for ensemble learning techniques 

No 
Algorithm 

Performance of ML 

Accuracy Precision Recall f-score 

1 DecisionTree 99.09 % 0.99 0.99 0.99 

2 NaiveBayes 60.56 % 0.47 0.61 0.48 

3 SVC 62.89 % 0.75 0.63 0.49 

4 Bagging(DT) 99.08 % 0.99 0.99 0.99 

5 Bagging (NB) 60.57 % 0.47 0.61 0.48 

6 Bagging (SVC) 62.89 % 0.75 0.63 0.49 

7 AdaBoost (DT) 99.15 % 0.99 0.99 0.99 

8 AdaBoost (NB) 70.74 % 0.84 0.71 0.75 

9 AdaBoost (SVC) 62.35 % 0.39 0.62 0.48 

10 RandomForest 99.14 % 0.99 0.99 0.99 

11 MajoritytVoting 63.44 % 0.76 0.63 0.50 

 

The three base classifiers; DT, NB, and SVC were utilised to construct the bootstrap 

aggregation (Bagging) ensemble learning method, a bar graph representing their performance 

is shown in Figure 4.1. 



50 
 

 

Figure 4.1 Base method accuracy 

In Figure 4.2, a bar graph representing Bagging (DT), Bagging (NB), and Bagging (SVC). 

From the figure, it is clear that Bagging (DT) outperforms the other two ensemble methods in 

terms of detection accuracy.  Bagging (SVC) performs slightly better than Bagging (NB) 

 

Figure 4.2 Bagging DT, NB, and SVC accuracy 

In terms of AdaBoost ensemble learning the three base classifiers were implemented as 

AdaBoost (DT), AdaBoost (NB), and AdaBoost (SVC), as shown in Figure 4.3. The results 

indicate that methods utilising the Decision Tree algorithm tend to have better detection 

accuracy, such as 99 % accuracy obtained by AdaBoost (DT). AdaBoost (NB) outperforms 

AdaBoost (SVC) with accuracy of 70.74% over AdaBoost (SVC) accuracy less than 64 %. 
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Figure 4.3 AdaBoost (DT), (NB), (SVC) accuracy 

The results obtained from ensemble learning also show that Decision Tree-based classification 

methods before better than probabilistic and non-probabilistic methods. Non-probabilistic 

achieve slightly better results than the probabilistic-based classification method. In both 

Experiments, ensemble learning techniques demonstrated high detection rates and high AUC. 

Among the ensembles, the highest accuracy was obtained by Random Forest and AdaBoost 

with Decision Tree as the based learner. Figure 4.4 illustrates the ROC curve of different 

ensemble methods, namely: Random Forest (RF), Decision Tree (DT), gradient boosting, and 

AdaBoost. The methods obtained ROC values above 90 % which indicate that ensemble 

methods are powerful and can help detect network anomalies and for intrusion detection. 
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Figure 4.4 Ensemble learning techniques ROC Curve Plot  

As presented by Figure 4.5, a closer look at the ROC curve illustrates that AdaBoost and 

Random Forest outperform the other methods by obtaining higher AUC values.  

 

 

Figure 4.5 Zoomed image of Figure 4.4 

Below the results for time taken for testing and bulding the machine learning models is 

discussed. 
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Decision Tree (DT) based methods: Methods utilising the Decision Tree algorithm tend to 

have better detection accuracy and demonstrate better performance in terms of correctly 

classifying malicious flows. On the other hand, DT methods take the least time when both 

building and testing their models. DT approaches outperform both probabilistic and non-

probabilistic approaches. See Figure 4.6 below. 

 

Figure 4.6 Classifier build and test time 

Probabilistic (Naïve Bayes) based methods: Methods utilising NB demonstrated the worst 

performance in terms of detecting malicious flows. However, the time to train and test the model 

is much more reasonable than for the non-probabilistic approach utilising SVC. 

Non-probabilistic (SVC) based methods: The results indicate that methods associated with 

Support Vector Machines perform better than probabilistic approaches in terms of flow 

classification. In addition, it takes longer to build and to test them, hence they are the worst 

methods to employ when the time is a critical issue. 

4.3. Result Analysis 

A summary of the results obtained from both experiments is illustrated in Figure 4.7. where 

the red bar indicates the accuracy of a classifier in packet-based datasets, and the blue bar the 

accuracy in flow-based datasets. From the Figure, it is apparent the algorithms obtained higher 
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accuracy in the flow-based datasets. This is because flow data contains a minimum number of 

feature attributes compared to packet-based datasets. This means they are more lightweight for 

processing which fulfils the desired goal of efficiency in processing power and storage. 

 

Figure 4.7 Packet and flow-based machine learning classifier performance 

The time each model takes to learn from the data, and the time it takes to classify an instance 

are very important metrics to consider in fast-changing networks with real-time security 

requirements. Flow-based data analysis using ensemble learning methods demonstrated fast 

performances in build and test time, Figure 4.8, and Figure 4.9. In addition, random Forest and 

AdaBoost have less build time in flow-based data compared to the Bagging ensemble classifier.  
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Figure 4.8 Model build time for packet and flow-based data 

 

 

Figure 4.9 Model test time in packet and flow-based data 

Conversely, when we consider the test time, presented in Figure 4.9, which is the amount of 

time taken by the method to classify new instances, Random Forest and AdaBoost ensemble 

techniques demonstrated better performance. Both the better identified best performing 

models, that is, AdaBoost and Random Forest were further implemented for classifying 

network data in a simulated SDN based tactical mobile network (presented in Chapter 7). 
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4.4. Concluding Remarks 

To develop an IDS using Machine Learning, an ML algorithm capable of detection totality and 

allowed to train and retrain in a minimal amount of time is ideal. In this chapter, a performance 

evaluation of different machine learning methods was conducted. Our approach evaluated the 

algorithms using two datasets, namely: 1) the UNSW-NB15 network datasets, which are 

packet-based, and 2) the CIDDS-001 flow-based datasets. The packet-based evaluation 

approach indicated that Decision Tree-based methods outperformed the probabilistic and non-

probabilistic techniques in terms of accuracy, False-positives, and AUC. Taking into 

consideration the model build time, the AdaBoost using Decision Tree demonstrated better 

performance, while Random Forest performed worst in test time.  

The flow-based evaluation implemented Decision Tree (DT), probabilistic (Naïve Bayes), and 

non-probabilistic (Support Vector Classifier) methods using Bagging and AdaBoost ensemble 

methods. The results obtained indicated that DT-based methods also performed better for flow-

based intrusion detection systems. They performed better in terms of Accuracy, Precision, 

Recall, and F-Score. The time taken by the Decision Tree algorithm to build and test a model 

was also reasonably small when compared with the probabilistic and non-probabilistic 

methods.  

From the experiments, we observed that ensemble learning-based techniques performed better 

than single ML techniques. Comparison of the ensemble techniques, the Random Forest, and 

AdaBoost ensemble methods with Decision Tree as the base estimator demonstrated suitability 

for intrusion detection in both the flow-based and packet-based network datasets.  

This chapter demonstrated that better results can be obtained when using a flow-based dataset, 

hence making them a suitable choice for IDS in TWN. The next chapter provides the proposed 

SDN enabled flow-based IDS. 

  



57 
 

Chapter 5: Software-Defined Flow-based 

Intrusion Detection System (SFIDS)  

The brief description of tactical networks and their limitations provided in Chapter 2 indicate 

that there is a need for an innovative networking paradigm for tactical network scenarios. 

Currently, Software Defined Networks (SDN) can provide many benefits such as network 

global view, programmability, and centralised control and management. Those capabilities can 

be used to enhance tactical networks’ limitations, for example, network global view can be 

used for data collection which presents the opportunity for better analysis of the network traffic 

in a tactical network for intrusion detection. In addition, due to the velocity, variety, and volume 

of the flow-data that can be acquired, big data methods can be used to power data-driven 

applications dedicated to different aspects of the network, including security solutions and IDS 

(Fahad, Sher and Bi, 2017). This Chapter proposes a Software-defined Flow-based Intrusion 

Detection System (SFIDS) model that uses SDN for data collection and ML techniques for 

intrusion detection. 

The presented SFIDS method is directly driven by the high and growing demand for network 

security in tactical networks as existing solutions experience challenges due to the hostile 

environment, limited power budget, and lack of centralised control and management units 

where security services and mitigation strategies can be provisioned on demand. The core 

components of the SFIDS include packet observation, flow metering and exporting, data 

collection and preparation, finally data analysis. These components utilise the SDN architecture 

to fulfil their respective tasks. For example, packet observation, metering, and data exportation 

are handled in the SDN data layer. Data collection and preparation is handled by a centralised 

collector residing in the SDN control layer. The ML models (Classifiers) are then developed 

into SDN applications taking prepared data from the collector as input to analyse and classify 

each data instance as either malicious or normal. 

5.1. Design Criteria 

This study proposes a Software-defined Flow-based IDS (SFIDS) that uses Machine Learning 

(ML) techniques to address the high demand for network security in military tactical networks. 

The motivation for this approach is the demand for an intrusion detection technique that can 

precisely detect hostile nodes in a hostile environment (Pawgasame and Wipusitwarakun, 
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2015). In addition, because tactical network nodes have low processing and power budgets, a 

light-weight mechanism that can achieve a high detection rate using minimum network 

resources is required. The proposed approach adopts the SDN paradigm for data acquisition, 

network global view, and real-time data analysis without compromising network lifetime and 

network resources. The approach can be extended to support incident handling and 

containment, which is regarded as important after network intrusions are detected. This section 

presents the design criteria or functional requirements of the proposed system. Based on 

(Metcalf and Lapadula, 2000), the functional requirements necessary for intrusion detection 

systems in a military context include; collecting, processing, analysing, reporting, warning, 

displaying, controlling, reacting, storing, and interacting. In that regard, the design criteria that 

were laid out for the SFIDS to meet these functional requirements are as follows: 

 The framework must be able to acquire or sample network flow-stats data in real-time. This 

can be achieved by using SDN and network flow sampling tools, such as sFlow, where a 

network flow is sampled by a sampling agent embedded in the SDN forwarding devices. 

Each network forwarding device samples flow-stat information and sends it to a logically 

centralised collector for processing and analysis. 

 The process of data gathering should be lightweight so as to not affect network processes, 

functions, and lifetime. The framework should be able to gather network flow stats while 

using minimal or limited network resources. 

 The framework must be able to perform reduction and pre-processing of sampled flow data 

for classification. This forms one of the most important features of the framework, as all 

the acquired data needs to be processed and presented in a specific format which will allow 

the Machine Learning algorithm to effortlessly learn and detect any anomalies.  

 The framework must be able to classify network flow instances as normal or malicious with 

high detection rates and recognition totality. Hence, it must be able to achieve high 

detection accuracy with low or no false-positive rates. This will be achieved by using 

Machine Learning techniques with high detection rates such as ensemble learning 

techniques, as established in Chapter 4. Each flow instance is sent to the ML model for 

classification and labelling as normal or malicious. 

 The framework should be able to generate timeless alerts if a malicious flow is detected. 

Generating alerts will help network administrators to react fast in terms of incident handling 

and incident containment. This can be done by deploying an SDN application on the 
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controller that can directly update flow table rules in the forwarding devices to block, drop 

or forward malicious traffic to a sandbox to monitor the malicious node. 

 The alerts generated by the framework must be easy to understand and implemented so that 

it does not overload the operator and system.  

 The alerts generated by the framework must be exportable to data visualisation frameworks, 

such as the ELK stack and databases for long term storage. Each alert must be accompanied 

by the malicious node’s information such as MAC address, IP addresses, and protocol for 

effortless analysis. 

5.2. SFIDS Model Architecture 

This section presents the proposed Software-defined Flow-based Intrusion Detection System 

(SFIDS) design. Design Science propounds that artefacts have both inner and outer 

environments. The inner environment deals with components that make up the artefact. While 

the outer environment refers to forces external to the artefact (Michalos and Simon, 1970). This 

section describes the SFIDS model and its components as applicable in a tactical network 

scenario.  

In this research, we proposed an intrusion detection system (SFIDS) which uses network flow 

data to detect anomalies, Figure 5.1. In general, SFIDS employs network flow sampling 

techniques to acquire network flow data from the tactical network devices and ML techniques 

to analyse the flow data and generate alerts if intrusive flows are detected. SFIDS is made up 

of four essential components, namely; Packet Observation component, Flow Metering and 

Export component, Data Collection component, and Data Analysis component. 
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Figure 5.1 Proposed Software-defined Flow-based Intrusion Detection System (Zwane, Tarwireyi and Adigun, 

2019a) 

5.2.1. Packet Observation 

The first step in the proposed model is packet capture which is carried out by a Network 

Interface Card (NIC) in the network devices. Each network device is embedded with a flow-

sampling agent. During this stage, packets pass several checks, which include checksum error 

checks. The packet is then timestamped, which is important for processing functions and 

analysis application. After packet capture and timestamping, packet truncation is applied to 

reduce the volume of data received and handled by the capture application. The last step 

involves packet sampling and filtering. Sampling is applied to reduce the load for subsequent 

stages and to moderate the consumption of bandwidth, memory, and computation cycles. 

Similarly, filtering is used to lessen the amount of data to be processed at later stages. 

5.2.2. Flow Metering and Export 

During this stage, packets are aggregated into flow records. The flow records are then exported. 

Packet aggregation is accomplished through a metering process which is based on Information 

Elements (IE) that define the layout of flows. IE are fields that can be exported in flow records, 
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for example, flow attributes, such as an IP address. After the metering process flow record 

sampling and filtering functions are performed. In contrast to packet sampling and filtering 

performed in the packet observation stage, flow sampling and filtering work on flow records 

instead of packets. Flow records are packaged into a specific message format depending on the 

protocol used. For example, the IPFIX message format or NetFlow format. After constructing 

the message, it is then exported to the logically centralised flow collector. The most 

implemented and deployed transport protocol for exporting such flows is UDP (Hofstede et al., 

2014).  

5.2.3. Data Collection and Preparation 

Flow records are exported to a logically centralised flow collector, which receives, stores, and 

pre-processes flow data from one or more flow exporters in the network. The flow collector 

conducts feature extraction which includes the task of picking the optimal features that will be 

used by the model to successfully classify the records. Data pre-processing is the process of 

converting flow records into a specific format that is acceptable to the detection algorithm used. 

This phase can include data cleaning, fixing missing values, data encoding, and normalisation. 

In this component, all the features of each flow record from the data collector are encoded and 

scaled. This allows the data analysis to be consistent while using less processing power, as 

required in power-constrained environments. Finally, the Collector exports the data for storage 

and for pre-processing, see Figure 5.1 above.  

5.2.4. Data Analysis 

At this stage, the results of all the previous stages come together. In the data analysis stage 

different data analysis methods can be applied, for example, flow analysis and reporting, threat 

detection, and performance monitoring (Hofstede et al., 2014). The task of intrusion detection 

is considered a classification problem since the goal is to classify network data as normal or 

malicious. One way to achieve this is by directly predicting the qualitative response for the 

observations (James, 2014). Since the task at hand requires the analysis and prediction of data 

instances, it can be regarded as a data science problem.  

However, from the experiments conducted in Chapter 3, we have observed that Decision Tree-

based methods usually outperformed both probabilistic and non-probabilistic methods in terms 

of detection accuracy, model build, and test time. In other cases, Machine Learning models can 

yield unsatisfactory results due to a number of issues, for example, a single ML method is only 
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capable of learning only some parts of patterns in the data. Thus, by suitably combining 

multiple learning techniques, such as every single learner being trained using a subset of the 

data, and their predictions being combined using an ensemble method for the final prediction, 

high detection rates can be achieved. This ensemble approach is presented in Figure 5.2. 

 

Figure 5.2. Generalized procedure for creating an Ensemble or a Meta- Model  

To improve the classification accuracy, this research proposes combining single ML algorithms 

to build an ensemble model. This approach requires that two conditions are met (Illy et al., 

2019); 

 The first condition requires that we have base learners or learning algorithms that perform 

better than random guessing or are reasonably accurate in their domain of proficiency. In 

this study, the Decision Tree classifier is used as the base learner. 

 The second condition defines how to combine the output of several base estimators to 

produce the final result. The methods of combining the base methods’ results are divided 

into multi-expert and multistage combinations (Illy et al., 2019). During a multi-expert 

combination, the base estimators work in parallel, and all of the selected outputs are used 

to generate the final result. For example, the Majority Voting and Bagging methods used a 

multi-expert combination. Conversely, the multistage combination employs a serial 

approach where each supplementary learner works on the limitation of the previous base 

learners, such as, trained or tested only on the instances that previous base learners were 

not capable of achieving satisfactory accuracy. Boosting is an example of a multistage 

combination.  
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Additionally, this stage can log all the instances and decisions taken into a log file. Such log 

files can be exported to a Log Management and Analysis tool to further analyse and visualise 

generated alerts.  

As mentioned, the SFIDS adopts Machine Learning classification techniques to analyse and 

classify the network flow instances as normal or malicious. The algorithm shown in Figure 5.2 

illustrates the steps adopted to create the ML classification model. The first step reads network 

flow datasets which consist of normal and malicious network traffic. This labelled data is used 

to construct the supervised Machine Learning classification model. After reading the data, we 

employ the pre-processing methods to prepare the data to build the model. The prepared 

labelled dataset is fitted to the ML classification algorithm, and this builds and returns an ML 

classification model capable of classifying network flow data as normal or malicious. The 

model is then exported to the application data analysis engine to analyse new network flow 

instances gathered from the network in near real-time.  

The model presented in Figure 5.1 can be summarised by combining the stages into three main 

components, namely; Data Acquisition, Data Pre-processing, and Decision Engine. Where 

Packet observation, flow metering, and export resides at the Data Acquisition Component, data 

collection and preparation in the Data Pre-processing component, and the data analysis and 

classification in the Decision Engine component. Figure 5.3 presents an overview of SFIDS 

with the three main components of the system. 
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Figure 5.3 SFIDS using an ensemble learning method  

5.3. Integration with SDN architecture 

As mentioned in the previous chapters, SDN plays a significant role in SFIDS. The three 

components illustrated in Figure 5.3 can be easily integrated with the SDN architecture, as data 

acquisition can take place at the Data Plane, data pre-processing at the Control Plane, while the 

decision engine component resides at the Application Plane. The following section discusses 

how the SFIDS leverages SDN to accomplish its tasks. Figure. 5.4 presents how SFIDS is 

integrated with SDN for military tactical networks. 
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Figure 5.4 SFIDS and SDN (Zwane, Tarwireyi and Adigun, 2019a) 

5.3.1. Data Plane 

 Data Acquisition Component (Packet Observation Stage and Flow Metering and Export 

Stage): All the network devices in the Data Plane are embedded with collector agents, as shown 

in Figure 5.4, the agents sample and send flow records to the centralised collector. The devices 

are configured to collect specific flow metrics and export them to the collector. Today built-in 

flow collection and export support are already offered by major vendors, for example, Cisco.  

5.3.2. Control Plane 

Data Pre-processing Component (Data Collection and Preparation Stage): The data collector 

residing in the CP module collects network flow records. The process of filtering is employed 

during feature extraction at this stage. The data collector generates and creates different 

datasets that are important for the adopted ML technique. Data sources are all network devices 

capable of communicating with the OpenFlow controller. 

5.3.3. Application Plane 

Decision Engine Component (Data Analysis Stage): The machine learning model is 

constructed and implemented as an SDN application. Different classifiers and regression 

models can be applied for different purposes as SDN applications using different datasets 

generated by the flow collector. Various applications can be constructed that are powered by 

ML models to influence the functioning of the network. Examples include incident handling 

applications, such as Rule or policy enforcement, and path selection applications. In our case, 

an ML model is built and used as an SDN intrusion detection application. This application will 
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be capable of classifying network flows as malicious or normal. Figure 5.5 presents the SFIDS 

deployment architecture. 

 

Figure 5.5 Proposed deployment architecture(Zwane, Tarwireyi and Adigun, 2019c) 

The SFIDS uses a centralised network intrusion detection architecture, where network flow 

data is collected from the nodes and sent to a centralised collection point for analysis. This is 

made possible by the adoption of the SDN paradigm, which provides scalable data collection, 

centralised control, and global network view which allow data extraction, processing, analysis 

using minimum network resources (Amaral et al., 2016). Thus, modern tactical military 

missions include a large number of actors which may consist of soldiers and vehicles operating 

independently or in coordination with each other or in sync with command centres (Poularakis, 

Iosifidis and Tassiulas, 2018). These actors are usually organised based on different commands 

or tactical goals. Actors are illustrated in Figure 5.5 as the subnets, consisting of a group of 

actors with similar commands. These actors may use fixed or deployable infrastructures to 

connect to high-level commands, for example, satellites, drones, and vehicles. This is reflected 

as switches in Figure 5.5 presented earlier, which can be any network device responsible for 

providing connectivity to the subnets. 
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5.4.  Overall SFIDS Overview 

In order to build an SFIDS, we need a method to extract flow data from the network. This 

method of extracting data should not affect or degrade the network’s functionality at any point 

in time. This is an important stage since each of the instances created by this function represents 

the network flow statistics to be analysed. Note that after getting these values, they are sent for 

pre-processing. The pre-processed data plays a big role since it is sent to the trained machine 

learning classifier for analysis and classification. 

5.4.1. Overall System Functionalities 

SFIDS gather and analyse network flow data from the network for anomaly detection. To 

achieve this functionality, first, the approach applies flow sampling using network sampling 

tools. After the system has effectively collected/sampled a flow instance, the second phase of 

the application then applies pre-processing and preparation techniques to the instance, this 

converts the flow instance to a suitable format for ML analysis. The prepared flow instance is 

then classified as normal or malicious using an ML classifier or model which is trained using 

labelled network flow data with both normal and malicious traffic. As seen in Figure 5.6, the 

infrastructure layer is composed of networking devices that are regarded as data sources. The 

data collector resides in the Control Layer acting as a centralised data collector, and finally, the 

intrusion detection module with the classification model is contained in the Application Plane. 
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Figure 5.6 Overall FIDS model utilising SDN architecture 

The steps of the algorithms from the SDN Data Plane to the Application Plane as shown in 

Figure 5.6 are discussed below: 

Step 1: Data acquisition and sampling  

This step plays an important role since it gathers network flow data from the network at 

multiple points, and presents it to the application for analysis and anomaly detection. As 

presented in Figure 5.7. Common approaches that can be utilised for this step include sFlow, 

NetFlow, and IPFIX tools (Hofstede et al., 2014).  

 

Figure 5.7 Data acquisition and sampling 
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Step 2: Data pre-processing and preparation 

As mentioned above the second step applies pre-processing and preparation to each network 

flow instance sampled by the network sampling tools. Data pre-processing is applied to each 

of the instances, pre-processing done includes; encoding instance transport protocol, encoding 

categorical data, encoding numerical data, applying dimensionality reduction, and data scaling. 

These functions can be implemented using data analysis and pre-processing packages, for 

example, python pandas, and Scikit-learn (Pedregosa, Weiss and Brucher, 2011). The process is 

shown in Figure 5.8. 

 

Figure 5.8 Data pre-processing and preparation 

Step 3: Data Analysis 

The third step is concerned with analysing each flow instance gathered and prepared by the 

first and second steps. For data analysis, a Machine Learning model is constructed and the 

model is then used to fit a classifier, and use it to classify each instance to detect network 

intrusions. Thus, each flow instance is analysed and classified as either normal or malicious 

using an ML classifier trained with labelled data. The classification model generates alerts if a 

malicious flow is detected, else the process of network flow acquisition, preparation, and 

analysis repeats itself, as demonstrated in Figure 5.9. 
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Figure 5.9 Data Analysis 

Step 4: Incident Handling /Mitigation 

The SFIDS method is capable of alerting network administrators by generating alerts if 

intrusions are detected. In conjunction with generating alerts, the study further proposes a 

system capable of handling incidents by employing mitigation strategies, such as blocking and 

dropping network traffic from an identified malicious node in the network. From the algorithm 

described in Figure 5.10, first, it gathers the ML classification model output. If the output 

indicates malicious behaviour, it extracts the IP address, MAC address, and the AP address 

providing network connectivity to the malicious node, else it returns to step 1. In step 3 the 

system sends network control flows to disable the malicious node (block node) from the 

network. Hence malicious nodes can be dropped or blocked from the network using this 

approach. 

 

Figure 5.10. Incident Handling 
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5.4.2. Unified Modelling Language (UML) 

The SFIDS is composed of three modules that work together to extract, analyse, and take 

action, namely: flow sampling module, data collector module, and IDS application module, 

which is operated by the ML model. The flow of events in each of these components is 

described in Figure 5.11. 

 

 

Figure 5.11 Flow of event in the SFIDS Model 

Sampling Agents 

The sampling agents wait for packets to be transmitted and collect flow information. The agent 

verifies if the packets meet specified criteria, which is vital for filtering network control 

messages, as depicted in Figure 5.11. If the packets meet specified criteria, filtering is 

conducted by defining a threshold. The threshold specifies and manages flows by inspecting 

packet headers. Flows are then packaged and sent to the collector.  

 

Collector Modules 

The collector module is responsible for collecting the data from the different sampling agents 

embedded in each network device. Its task is to collect the flow data, employ feature extraction 

then pass the data with appropriate features or attributes to the SDN application for data pre-

processing and cleaning. 

 

IDS Application 
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The IDS application periodically queries or retrieves flow records from the collector. It waits 

with time out and repeats the process. For each new flow record, pre-processing methods are 

applied to the flow record. After converting the flow record into ML acceptable input format, 

the ML model is used to classify it as normal or malicious. If the record is normal, then the IDS 

application moves on to the next flow record retrieved. However, if the record is malicious, the 

application takes a snapshot of the flow record’s data and inserts the information in a log file. 

Logging detected malicious incidents could then be helpful for visualisation and security 

incident handling. A sequence diagram of the flow-based intrusion detection method using an 

ensemble learning technique is shown in Figure 5.12. 
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Figure 5.12 Sequence diagram 
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5.5. Summary  

The integration of Machine Learning and SDN for intrusion detection in military tactical 

networks will result in a number of benefits which include high detection rates, efficiency, and 

real-time data collection. This will help ensure security while introducing timeless and real-

time attack detection and alerting capabilities. Furthermore, the study proposes the use of 

network flow data for intrusion detection since it is computationally cheap, independent from 

encrypted data, lightweight, and faster compared to the traditional packet-based intrusion 

detection approach (Fahad, Sher and Bi, 2017). Accordingly, this chapter presented the Flow-

based IDS model, functional requirements, and the integration with SDN architecture.  
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Chapter 6: SFIDS Implementation  

To address the fourth objective of this research (as stated in Chapter 1), which is to implement 

SFIDS, this chapter outlines the implementation of the Software-defined Flow-based Intrusion 

Detection System (SFIDS) prototype to operationalise it using Mininet-Wifi. The chapter 

presents the solution implementation and evaluations guided by the Design Science 

methodology mentioned in Chapter 3. This chapter presents the technical feasibility of the 

SFIDS method. In particular, the chapter details the experimental setup and technologies used 

to realise and implement SFIDS. It further presents the data collection and pre-processing 

procedure in a wireless SDN environment to mimic an SDN-based tactical MANET 

deployment. This chapter further elaborates on Chapter 5 in its response to the second sub-

research question, by focusing on the implementation SFIDS proposed in Chapter 5. 

6.1. Environment Setup and Tools 

This section presents the Software-Defined Network (SDN) environment setup and tools used 

to implement the proof-of-concept prototype. In particular, the section presents the topology 

used, emulation tool, OpenFlow controller, packet generation, and sampling tools.  

6.1.1. Mininet-Wifi 

Mininet-Wifi (Fontes et al., 2015) is a wireless network emulation tool used in our experiments. 

Mininet-Wifi is an extension of the Mininet software popularly used in SDN research. Mininet 

is an emulation tool used to prototype a network on a laptop or PC by using the Kernel 

namespace feature. The network namespace is used by Mininet to provide individual processes 

with their network interfaces, ARP tables, and routing tables. It uses process-based 

virtualisation to run switches and hosts on the Kernel, which allow large networks with 

different topologies to be emulated and evaluated. Mininet-Wifi augments Mininet with virtual 

wireless stations and access points while maintaining the original SDN capabilities and 

lightweight virtualisation software architecture. Mininet-Wifi is a tool that allows the 

emulation of OpenFlow/SDN scenarios that enable high fidelity experiments that replicate real 

networking environments. 
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6.1.2. Network topology 

Military tactical networks deployed in the battlefield have to support critical mission 

requirements in harsh operational environments. Such networks are forced to deal with the 

effects of frequent mobility, irregular link state, and inconstant bandwidth in hostile territory 

(Marcus et al., 2019). This subsection presents the proposed tactical MANET topology used in 

this work. Figure 6.1. Shows a tactical mobile ad-hoc network topology with three Access 

Points (APs) and stations connected to them. 

 

Figure 6.1 Tactical MANET topology 

They are assumed to have a strong power supply, for example, they may be devices running 

on the troop vehicles, or temporary command and control centre. They provide network 

connectivity to the stations connected to them. The low- power devices, such as light devices 

carried around by the troops, connect to the cluster heads to get network access. The cluster 

heads are used to handle intrusion detection tasks since they possess a high power budget. To 

address the problems of dynamic configuration and network global view Software Defined 

Networking (SDN) is introduced to this topology. 

6.1.3. OpenFlow Controller 

The increasing popularity of SDN resulted in several OpenFlow controllers being developed, 

these controllers are classified into centralised and distributed controllers. In a centralised 

controller, a single server is responsible for all the control plane activities. The benefit of this 

approach is simplified management as it makes a single point of control available. Examples 

of popular centralised controllers include; Beacon (Erickson, 2013), Rosemary (Shin et al., 

2014), Maestro (Cai, Cox and Ng, 2010), NOX-MT (Tootoonchian et al., 2012), and 
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OpenDayLight. However, centralised controllers suffer from scalability issues as each server 

has restricted capacity in handling data plane devices. 

In contrast, distributed controllers have advantages in terms of scalability and high performance 

during increased demand for requests. Popular distributed controllers include, Hypervisor 

(Tootoonchian, 2010), SMaRtLight (Botelho et al., 2014), ONOS (Berde et al., 2014), ONIX 

(Koponen et al., 2010), and Floodlight. In this work, the Floodlight controller is used. 

Floodlight is open-source software written in Java. The main advantage of Floodlight is that it 

is designed to allow third parties to modify the software and develop applications. The 

approach uses the Representational state transfer (REST) APIs to simplify the application 

interfaces to the product. 

6.1.4. Flow Sampling 

The most crucial stage of any intrusion detection is the data gathering stage. Intrusion detection 

methods are data-driven which means they can fulfil their purpose through analysing data. This 

is more than enough to emphasise the importance of data in such systems. The proposed FIDS 

system makes use of network flow data for intrusion detection. This is because the task of 

acquiring flow records from networks has been simplified recently (Fahad, 2017), with major 

vendors nowadays offering incorporated flow gathering and export support in their hardware. 

Examples of these flow collection and export protocols include Cisco’s NetFlow, IPFIX, and 

sFlow. This process is packaged under the Packet Observation stage. In this work,  sFlow was 

used for packet observation because it is the process of capturing packets from the 

communication line and pre-processing it for further use. 

sFlow is a multi-vendor sampling technology that is embedded within network forwarding 

devices, in our case SDN data plane devices. It offers the ability to continuously monitor 

application-level traffic flows at wire speed on all interfaces simultaneously (Visible and 

Packard, 2003). The sFlow mechanism is made up of two components; the sFlow Agent and 

sFlow Collector.  

The sFlow Agent is a software process that runs as part of network management software 

within the devices. It combines both interface counters and flow samples into sFlow 

Datagrams. The sFlow Datagrams are then immediately sent to the sFlow Collector, where they 

are analysed to produce a rich, real-time, network-wide view of the traffic flows. Figure 6.2 

shows the sFlow mechanism, with the sFlow agent, collector, and datagrams.  
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Figure 6.2 sFlow agent and Collector (Visible and Packard, 2003) 

The sFlow sampling technology is characterised by the following network traffic monitoring 

requirements: 

 sFlow makes network-wide view of usage and active routes available, enabling tens of 

thousands of interfaces to be monitored from a single location. 

 sFlow achieves scalability, meaning it has the capacity  for handling or monitoring links 

of up to 10GB/s and beyond without adding major network load. 

 sFlow can be deployed at a very low cost, applicable in simple Layer 2 switches to 

high-end core routers without needing extra memory and CPU. 

 sFlow is industry recognised, as such an increasing number of vendors offer sFlow 

support in their network devices. 

6.2. Simulation and Data Collection 

The primary focus of this section is to present the implementation of SFIDS in SDN-based 

wireless network. Figure 6.3 illustrates the proposed model embedded with the technologies 

discussed in Section 5.4 that are used to accomplish each task.  
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Figure 6.3 Implementation of FIDS model utilising SDN architecture 

6.2.1. Network Simulation 

In this study, using Mininet-Wifi, a wireless network with three access points (APs) and eight 

wireless stations (Sta) as shown in Figure 6.1 was created. The OVSKernelAP was used for 

the network Access points. The Floodlight OpenFlow Controller was used as the Network 

Operating System (NOS). Using VirtualBox a new Virtual Machine (VM) was created to host 

the Floodlight controller, hence the controller was running in a VM running on VirtualBox in 

the host computer containing Mininet-Wifi. In essence, the floodlight controller and  Mininet-

Wifi reside on logically separate machines, and this is done to mimic a realistic SDN 

deployment scenario where the controller may be located in a remote server. The floodlight 

controller is started using the command below and the output is shown in Figure 6.4. 

   sudo java –jar targer/floodlight.jar 
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Figure 6.4 Starting Floodlight Controller in terminal 

After running the Floodlight controller, we open a new terminal in the host machine where  

Mininet-Wifi, sFlow, and Scapy are installed. As mentioned, a custom topology with three 

access points and eight wireless stations was created. The topology is created through running 

the python script as; 

sudo python military_tactical_Manet.py 
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Figure 6.5 Simulation of SDN based tactical MANET in Mininet-Wifi 

From running the topology script, the resulting topology is used in our experiments. Figure 6.6 

shows the network nodes and access points. While Figure 6.7 and Figure 6.8 shows the 

Floodlight GUI and different network nodes’ terminals respectively. 

 

Figure 6.6 Wireless SDN topology with three APs and eight stations 
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Figure 6.7 Floodlight GUI with 3 Access points and 8 Stations connected 

 

 

Figure 6.8 Network nodes or Mininet-Wifi node instances (Containers) 
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6.2.2. Data Collection Scenarios 

Military tactical networks with fixed infrastructure have comparable vulnerabilities with their 

commercial equivalents, except that they must be secure against adversaries that possess 

greater capabilities, resources, and motivation (Kurdziel, 2014). In addition, networks with 

mobile infrastructure components have extra vulnerabilities that must be considered. For 

example, devices or equipment are subject to capture by adversaries and an intruder may add 

a node to the network by replicating its id to get access to cryptographic keys and secret 

messages passing through the network. 

The evaluation scenarios used in this study focus on adversaries taking advantage of a Mobile 

Ad hoc tactical network, as there is a possibility of an adversary gaining access to the network, 

and being able not only to eavesdrop sensitive information but also to mislead the users or harm 

the network (Carvalho and Costa, 2016). In that regard, the study focusses on internal network 

attacks rather than external attacks which are common in fixed infrastructure networks. The 

next subsection presents three test scenarios containing simulated internal attacks and 

assumptions made in each scenario. 

1) Scenario 1: TCP flood attack detection 

The first test assumes an intruder has successfully infiltrated the network and launched a TCP 

flood attack on a node in the network. The malicious node issues a TCP flood attack to a 

specific node they have already identified in the network. The target node is then denied service 

by a malicious node connected to the network (see Figure 6.9). The purpose of this test is to 

validate the effectiveness of SFIDS in terms of recognising and detecting malicious nodes in 

the network. 
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Figure 6.9 TCP flood attack scenario 

 Test 1 procedure 

The topology of the first test consists of eight nodes each connected to an Access Point (AP) 

as described in Chapter 5. All the nodes are connected to the network by wireless links, through 

Software Defined Networking (SDN) enabled APs. The attacker node attacks the target node 

connected to another AP using a TCP flooding attack. 

2) Scenario 2: ICMP flooding attack detection 

In the second test, we assume a node was successfully compromised and is used to launch an 

ICMP flooding attack on a specific target node. Since in tactical networks nodes are simple 

portable devices, it is sufficient to assume that such nodes can be captured and used to 

impersonate authorised nodes with hopes to disrupt network functions and interrupt 

communications. The purpose of this test is to evaluate the efficiency of the SFIDS in terms of 

detecting internal attacks or attacks arising from within the network. 

 Test 2 Procedure 

The second test consists of eight nodes connected to three access points respectively. Assuming 

that one of the network nodes is compromised and starts to act differently by producing a high 

volume of traffic flow, shown in Figure 6.10. The compromised node is used to launch an 

ICMP flooding attack on a target node. The compromised node (attacker) acts as the source of 

the attack.  
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Figure 6.10 ICMP flood attack scenario 

3) Scenario 3: DDoS attack detection 

The last test assumes two network nodes are compromised and are used to launch a DDoS 

attack on a target node. A Distributed Denial-of-Service (DDoS) attack is usually used by an 

attacker to disable the availability of services, which can result in tactical network nodes losing 

network connectivity and becoming isolated from the network. The purpose of this test is to 

measure the effectiveness of the IDS to detect DDoS attacks originating from the internal 

network, as shown in Figure 6.11. 

 

Figure 6.11 DDoS attack scenario 

 Test 3 Procedure 
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In the third test, the topology remains the same as the previous test cases. We assume two are 

compromised, these two compromised nodes are used to generate a high volume of traffic 

which amounts to a DDoS attack on a target node. At the same time, normal traffic is running 

between all the nodes.  

6.2.3. Traffic Generation 

In this work, packet generation is done using Scapy (Biondi, 2017). Scapy is a popular python 

packet manipulation tool used for packet generation, traffic sniffing, scanning, trace routing, 

probing, attacking, and packet forging. This work used Scapy to generate UDP and TCP normal 

packets. Also, hping3 was used to generate attack traffic for the three scenarios discussed in 

the previous subsection. Hping3 is a free packet generator and analyser used for security 

auditing of firewalls and networks.  

Python version 3.5 is used to write the code for generating a random source IP address and host 

IP address. The “randrange” function is used to produce a uniform random float in the range 

[0.0, 0.1]. These numbers are then joined together to form source IP addresses. In the packet 

generation process, two additional parameters are set; the packet type and interval of packet 

generation. A combination of both UDP and TCP packets are used for the traffic. The interval 

was set at 0.1 seconds for the normal traffic. The adopted scripts for the normal traffic are from 

the work of (Stoyanova Todorova and Todorova, 2016). The packets are sent using the 

interface wlan0 of the respective station. Two parameters are provided to the script, which 

specify the range of last numbers of the destination IP addresses, and it generates traffic with 

those destination IP addresses of the nodes in the network. A station is randomly selected and 

the script to generate the normal traffic is executed. The nodes and traffic being generated is 

shown in Figure 6.12 and Figure 6.13. 

 sudo python3 normal_traffic.py –s 1 –e 8 
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Figure 6.12 Normal traffic generator using station 1 

Scenario 1 TCP flooding attack traffic generation using hping3 commands 

Scenario 2 ICMP flooding attack traffic generation using hping3 commands 

Hping3 –c [number of packets] –d [packet-size] –w [TCP window size] –p [destination port] 

-flood 

For Scenario 3, DDoS attacks traffic generation, a python script using Scapy was used to 

generate denial-of-service attacks targeted as a single node in the network, hence denying 

service to the target node. 

sudo python3 ddos_single.py 10.0.0.8 
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Figure 6.13 node (Station 1) generating DDoS traffic to target station with IP address 10.0.0.8 

The data is labelled separately, as such the normal traffic is generated independently then given 

the label, such as 0, and the attack traffic is also sampled independently and labelled as 1. The 

methods used for sampling and pre-processing are described in the following section. 

6.2.4.  Flow Sampling in SDN 

The next step involves data sampling, collection, and pre-processing for the IDS. The two most 

common protocols used for flow-stats collection in SDN environments are OpenFlow and 

sFlow (Giotis et al., 2014). Nevertheless, in (Giotis et al., 2014) the authors argued that using 

the native OpenFlow for periodic processing of flow-stats requests/replies affects the network 

performance. They observed that the approach requires a massive amount of CPU processing 

power from the controller. In this study, the sFlow-based approach is adopted.  

Due to the above-mentioned reasons, sFlow fits our deployment requirements as it can be 

deployed to power, memory, and CPU constrained devices and yield great results without 

requiring additional memory and processing power. In this work, the sFlow agents are installed 

in each of the SDN data plane network devices, in our case the Access Points (APs), see Figure 

6.8. The sFlow Collector resides in the node housing the SDN controller, that is, an enormous 

power-budget device, possibly located at the military base or headquarters.  This is done to 
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simplify the task of passing and sharing information between the sFlow collector and the SDN 

controller.  

All the APs in the topology are responsible for flow data sampling using the embedded sFlow 

agents. The APs send all the gathered data to the central sFlow collector. This method samples 

flow-stats data in the SDN environment without affecting network performance and consuming 

high processing power. 

Each network device, such as AP, collects a variety of attributes for each flow in the network. 

However, since not all attributes are useful for intrusion detection, feature extraction methods 

are applied to select and extract only the useful attributes for the task of intrusion detection. 

Pre-processing of the data is then performed to convert the data into an acceptable format for 

analysis. 

We run the sFlow-RT flow sampling tool and the CLI output is shown in Figure 6.14, while 

the GUI is presented by Figure 6.15. 

 ./start.sh  

 

Figure 6.14 Starting sflow tool for flow stat collection in terminal 
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Figure 6.15 sFlow-RT running in the browser 

6.2.5. Data Preparation and Labelling 

In this study, we extracted eight attributes that are considered important for classifying flow 

data in reference to the CIDDS-001 datasets (Markus Ring et al., 2017). The attributes are 

presented in Table 6.1. 

Table 6.1: Extracted Attributes 

Attribute Description 

start_time_stamp The start time flow is first seen 

source_ip_addr Flow Source IP address  

source_port Flow Source port  

destination_ip_addr Flow Destination IP address 

destination_port Flow Destination port 

transport_protocol Transport Protocols used (e.g. TCP, UDP, or ICMP) 

flow_size Flow size, average size of the packets seen in the flow 

flow_duration The duration of the flow 

Hence, a combination of multiple instances extracted from the network results in a dataset 

composed of categorical and string attributes. After selecting these features, we apply pre-

processing steps to convert the generated dataset to a format acceptable to classification 

algorithms.  
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Usually, Machine Learning algorithms are trained using prepared data that is in the form of 

numerical vectors which are called feature vectors. Therefore, before this data(refer to Figure 

6.16) can be used to train a Machine Learning model, the data must be transformed into a 

feature vector of numeric values. The steps taken to label and pre-process the generated data 

are explained below. 

 

Figure 6.16 Flow data sampled from SDN network 

A. Observations Distribution  

After finalising the experimental setup and making sure everything works well, a python script 

using Scapy version 3.0.0 to generate normal network and attack traffic is executed. The 

generated traffic is sampled using the defined sFlow mechanism. The normal traffic is given 

the label 0, and the attack traffic is labelled 1. In total the dataset used for the machine learning 

classifiers for all three scenarios is shown in Table 6.2. While Figure 6.17 shows a graphical 

representation of the data. 

Table 6.2 Data Distribution for three scenario 

  Normal Malicious Total 

Scenario 1 95 993 33 802 129 795 

Scenario 2 91 269 38 526 129 795 

Scenario 3 95 993 33 802 129 795 
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Figure 6.17 Distribution of Normal and Malicious network flow from SDN 

i. Encoding Categorical features 

Categorical features present challenges to machine learning algorithms when building models. 

While other ML packages can transform categorical data into numeric data automatically using 

default embedded methods, many other Machine Learning packages do not support such input, 

for example, the adopted Scikit-learn library (Pedregosa, Weiss and Brucher, 2011). However, 

the Scikit-learn library contains classes that can be used to encode categorical data. For 

example, OneHotEncoder and FeatureHashing. 

 OneHotEncoder (OHE) is a representation method that takes each category value and 

turns it into a binary vector of size |i|, where “i” is the number of categories, and all columns 

are assumed to equal zero besides the category column. The limitations of OHE are that its 

representation produces high dimensionality, which causes an increase in the model's 

training time, serving time, and memory consumption. This method can easily cause the 

models to overfit the data.  

 FeatureHashing also known as the hashing trick, is a method for turning arbitrary features 

into a sparse binary vector. It has a standalone hash function that does not require a pre-

built dictionary of possible categories to function, and this makes it extremely efficient. In 

a simple implementation, the user specifies the desired output dimensionality, the method 

then hashes the input value into a number, then divides it by the specified dimensionality 

and returns the remainder, R. The final output is a vector of zeros with a one in the index 

R. FeatureHashing has low dimensionality since the user specifies it, making it efficient in 

processing time and memory. The dimesion used in this study are shown in Table 6.3 
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Table 6.3: FeatureHashing dimensionalities applied to each of the categorical features 

Feature Dimensionality 

source_ip_addr 10 

source_port 10 

destination_ip_addr 10 

destination_port 10 

transport_protocol 4 

This work adopted FeatureHashing as the encoding method for all the categorical features of 

the dataset. Each categorical feature is hashed on its own, and the resulting hash function is 

later used to hash each new instance's categorical features. For example, each source_ip_addr 

of an instance is hashed using the same hash function used to hash the training data.  

6. Dimensionality Reduction and Scaling 

After encoding the mentioned features from the above step, the FeatureHashing method returns 

each feature with the specific dimensions, see Table 6.3 above. We then apply dimensionality 

reduction using the Principal Component Analysis (PCA) technique. PCA is an unsupervised 

linear transformation technique widely used for feature extraction and dimensionality reduction 

across different fields. PCA finds the direction of maximum variance in high-dimensional data 

and projects it into a new subspace with equal or fewer dimensions than the original data. The 

final output from FeatureHashing and PCA returns a single value for each feature. Finally, all 

the features are brought together to form a dataset in an appropriate format for machine learning 

algorithms in Scikit-learn. 

In addition, if a feature has a variance magnitude greater than the variance of other features, 

that particular feature might dominate the other features in the dataset, which will introduce a 

drawback to the Machine Learning model built using the data. Therefore, we set the variance 

of the features to the same range using StanderdScaler class found in Scikit-learn. This scales 

the features to a range centred around zero. The final output dataset is shown in Figure 6.18 
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Figure 6.18 Prepared data, after employing FeatureHashing, PCA, and scaling 

6.3. Dataset Exploration and Visualisation 

The next step after data collection in the data science methodology (Zumel and Mount, 2014) 

is data visualisation and analysis, which focuses on identifying relationships and characteristics 

of the collected data. In order to determine the relationship between flow-based data features 

and the output variable, feature selection, correlation heatmap, and data distribution techniques 

were used. 

6.3.1. Feature importance 

Feature selection is the task of identifying the most related features from the dataset. This can 

result in a reduction in the number of features to achieve better accuracy. Feature selection can 

help improve model accuracy, reduce overfitting, and reduce training time. In this study 

Feature importance was calculated as the score for each feature of the data, the higher the score, 

the more relevant is the feature towards the output variable. Feature importance was calculated 

using tree Extra Tree Classifier from the Scikit-learn library (Pedregosa, Weiss and Brucher, 

2011). Figure 6.19 illustrates the most important features in the flow-based dataset collected 

from the simulated SDN-based tactical MANET. The created visuals suggest that src_port is 

the most highly-ranked feature in the dataset.  
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Figure 6.19 Scenario1 dataset feature importance 

6.3.2. Correlation Matrix Heatmap  

Correlation defines how each of the features is related to each other and or the target variable. 

The correlations can be negative or positive. A negative correlation means an increase in one 

value of the feature decreases the other value, while positive correlation means an increase in 

one value of the feature increases the value of the other feature. The feature with more relation 

to the target variable can help improve model accuracy, while the ones with a high relation to 

each other can affect model performance. The correlation between the features for the first 

scenario is presented in Figure 6.20. 
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Figure 6.20 Scenario 1 correlation heatmap of features 

6.3.3. Dataset distribution  

Data distribution visualisation helps in understanding the characteristics of the data as one can 

learn the difference between the data and the target variables, such as normal flow data and 

malicious flow data. Data distribution visualisations, using the most relevant features identified 

using feature importance above, were plotted to help understand the relations between them. 

For example, the distribution of source port numbers is shown in Figure 6.21. 
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Figure 6.21 Distribution of source port by class type for scenario1 dataset 

6.4. Summary 

This chapter presented how to operationalise SFIDS, an SDN-based IDS that uses ML for data 

classification (presented in Chapter 5). The model is realised through a proof-of-concept 

prototype that can be deployed in an SDN environment using Mininet-Wifi. To evaluate the 

effectiveness of the model, three test scenarios were simulated and network flow data was 

collected and pre-processed. The data was sampled and collected from the network using sFlow 

(a flow sampling tool). Each of the normal and attack traffic data was collected independently 

and labelled accordingly. During pre-processing, FeatureHashing was used to encode 

categorical features while PCA was used for feature reduction. Furthermore, this chapter also 

presented the observed relations between the features of the data, which include feature 

importance, and correlations. Thus, after the collection and preparation of the data, the next 

chapter (Chapter 7) evaluates the effectiveness of the SFIDS approach using two ensemble 

learning techniques, namely; AdaBoost and RF. 
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Chapter 7: Results and Discussions 

For the designed artefact (SFIDS) to be rigorously assessed, methodologies from the 

knowledge base must be used (Hevner et al., 2004). In addition, the method must match 

properly with the artefact and the nominated evaluation metrics. Examples of design evaluation 

methods include; observational, analytical, experimental, testing, and descriptive methods. The 

observational method can be the study of an artefact in-depth in the deployment environment, 

examples include Case Study and Field Study. Analytical methods study the structure of the 

artefact for static qualities, such as complexity. Experimental methods examine the artefact in 

a controlled environment for quality and usability, including executing artefacts using artificial 

data, known as Simulation. In this study, the experimental method is used, as the artefact is 

evaluated using artificial flow data, gathered from a simulated SDN-based tactical MANET 

environment. Thus, this chapter strives to provide and present evidence of the effectiveness of 

an ML-based FIDS model for tactical mobile networks called SFIDS, described in Chapter 6.  

7.1. SFIDS Review 

SFIDS uses the SDN paradigm capabilities, which include network global view and real-time 

flow data extraction, to gather and process network data from nodes connected to the network. 

As in Section 5.3, each network device or node in the SDN infrastructure layer is embedded 

with a flow sampling agent that periodically samples flow data passing through the network. 

The data is then exported using the UDP protocol to a centralised collector residing in the SDN 

control layer. The data collector then prepares the data for analysis and classification in the 

SFIDS’s Decision Engine (DE).  

The DE is made up of an ensemble ML model which is located in the SDN application layer. 

In this study, two models were tested for their effectiveness in detecting intrusive activities in 

the tactical network, presented in Section 7.2. The decision engine takes each sample prepared 

by the collector and classifies it as either normal or malicious. If the sample is malicious then 

the decision engine generates an alert and notifies the SDN controller to take appropriate 

actions. For example, incident handling and enforcing rules to mitigate the attack. This process 

takes place in real-time allowing timely detection of attacks and mitigation as soon as possible 

before further harm is done to the network and its users. 
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A closer look at the SFIDS system and the different operations that occur within it for intrusion 

detection in tactical networks is presented in Figure 7.1 and the different colour arrows are 

explained below: 

 

Figure 7.1 SFIDS model for tactical networks 

 

 Blue: Flow data is sampled from the Tactical network and exported to a centralised 

collector that pre-processes and prepares each sample in real-time for the Decision 

engine.  

 Green: The decision engine accepts the prepared sample as input and classifies it as 0: 

normal or 1: malicious. If the sample is classified as normal, it is dropped and a new 

sample is classified. 

 Red: The decision engine classifies the input sample as 1: malicious, it sends an alert 

to the SDN Network Operating System (the controller) which can send a flow to either 

block all traffic originating from the device owning the sample or redirect all from that 

device to a sandbox to monitor its activities. 

 

7.2. ML Models Architecture and Parameters 

To ensure rigour in the development of the machine learning classification model (Hevner et 

al., 2004), this study adopted and used the data science life cycle to develop and evaluate the 

ensemble ML models, as discussed in Chapter 3, Subsection 3.2.3. The ML classification 

models play a very important role in the proposed FIDS since they are responsible for the data 

analysis and intrusion detection functionality. For the evaluation of the SFIDS, ensemble 

algorithms Random Forest and AdaBoost were considered since they were recognised as better 

performing in Chapter 4. This Section presents the architecture and choice of parameters used 

for each of those ensemble algorithms used for SFIDS’s DE. 
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7.2.1. Adaptive Boosting  

AdaBoost is commonly known as a meta-estimator that starts by training a classifier on the 

original dataset and then trains additional copies of the classifier on the same dataset while 

adjusting the weights of the incorrectly classified instances. In this study, an AdaBoost model 

using Decision Tree as the base estimator is trained and tested for its effectiveness in detecting 

intrusions in SDN-based tactical MANET 

In AdaBoost, the main parameter to tune to obtain good performance is the n_estimator 

parameter which controls the number of base estimators. To determine the most optimal 

number of estimators for good performance, a comparison of the classification error of a 

boosted Decision Tree using Real AdaBoost and Discrete AdaBoost was conducted. The results 

indicate that Real AdaBoost performed better than Discrete AdaBoost as it obtained a smaller 

train and test error. The results also indicated that after 50 trees, both the algorithms converge 

with 18.8 % error for the real AdaBoost and 18.9 % error for the Discrete AdaBoost   

respectively, as shown in Figure 7.2.   

 

Figure 7.2 Real and Discrete AdaBoost error rate per number of estimators 

In the AdaBoost classification model construction, The Real AdaBoost of Scikit-learn with 100 

estimators was used, as the setup demonstrated minimum error which implies the capability of 

a high detection rate. Besides using 100 estimators to ensure a high detection rate. The 

parameters used to ensure model simplicity and less complexity are shown in Table 7.1.  
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Table 7.1 AdaBoost configuration parameters 

AdaBoost parameters 

Base estimator Decision Tree 

N_estimators 100 

Learning rate 1 

Algorithm SAMME.R 

 

7.2.2. Random Forest 

Random Forest is an ensemble model based on Bagging as the ensemble method and Decision 

Tree as the base method. In this subsection, the Random Forest algorithm or steps are presented 

to help understand how it can be fitted to the training dataset and tuned for effective 

performance. 

Step 1: Select n random subset from the training set 

Step 2: Train n Decision Trees  

One random subset of the data is used to train one Decision Tree 

Optimal splits for each Decision Tree are based on a random subset of the features. For 

example, if there are 10 features, the method randomly selects 5 out of the 10 to split. 

Step 3: Each tree predicts the records in the test set independently 

Step 4: Make the final prediction 

For each record in the test data, use the class with the majority vote as the record's final 

prediction. 

To achieve optimal performance from a Random Forest model, it needs to be thoroughly tuned 

to properly fit the dataset to ensure better performance. As mentioned in the section above, 

Random Forest is trained using bootstrap aggregation, where each new tree is fit from a 

bootstrap sample of the observations (Scikit-learn, 2019, v0.21.3). In that sense, we let this 

training observation be;  𝑧𝑖 = (𝑥𝑖, 𝑦𝑖). Thus, we can calculate the average error for each 𝑧𝑖 

using predictions from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This 

error is called the out-of-bag (OOB) error. The OOB error is measured at the addition of each 

new tree during the training process. Hence this can allow practitioners to approximate a 

suitable value of n_estimators at which the error stabilises.  
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To identify the most appropriate configuration of the Random Forest Model, the OOB error 

was measured while incrementing the number of estimators. In the setup, three random forest 

models considering a different number of features, such as “sqrt”, “log2”, and “all the features” 

were compared to determine the best split and appropriate number of trees. The results 

indicated all the feature splits considered resulted in the same performance. Also, optimal 

performance from the model is obtained when it has 25 or more estimators. Figure 7.3. presents 

the performance of the Random Forest model with a different number of estimators. 

 

Figure 7.3 Random Forest OOB error 

 

The insights obtained from the results presented in Figure 7.3 were used to devise the 

configuration of an optimal Random Forest model for the presented scenario. Table 7.2 

presents the configuration used for the random forest model.  

Table 7.2 Random Forest configuration parameters 

Random Forest Parameters 

N_estimator 100 

Criterion Gini 

Max_depth None 

Min_sample_split 2 

Min_sample_leaf 0 

Max_features None 

 

As with the AdaBoost classification model presented above, three scenarios are used to validate 

and evaluate the model. The test cases and performance results of the Random Forest 

classification model are presented next.  
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7.3. Performance Evaluation 

The evaluation of the FIDS for tactical MANETs was conducted using three scenarios, see 

Chapter 6 Section 6.2.  The results are presented based on those three scenarios, namely; TCP 

flood detection, ICMP flood detection, and DDoS attack detection. 

7.3.1. TCP flood attack detection 

The first scenario is concerned with evaluating the model’s effectiveness in detecting TCP 

flood attacks issued by a legitimate network node, assuming it was physically captured and 

used to launch the attack. Table 7.3 shows the configuration for the training of the model, such 

as the dataset distribution for both training and testing of the model. From Table 7.3, 86 962 

records were used for training and 42 833 instances for testing, with a total of 129 795 

instances. 

Table 7.3 Scenario 1 dataset configuration 

Scenario 1 Normal Malicious Total 

Train 64 416 22 546 86 962 

Test 31 577 11 256 42 833 

Total  95 993 33 802 129 795 

Given the configuration and the parameters presented in Table 7.2 and Table 7.3, and the 

dataset configuration in Table 7.4, the confusion matrix of the resultant models after training 

with Scenario1 data is shown in Figure 7.4 and Figure 7.5. The AdaBoost model was able to 

correctly classify 6092 malicious instances as malicious and 5164 malicious instances as 

normal, while correctly classifying 29223 normal instances as normal, and incorrectly 

classifying 2354 normal instances as malicious. The Random Forest model, correctly classified 

7081 malicious instances as malicious and 4175 malicious instances as normal. This suggests 

that the Random Forest model has a higher true positive rate than the AdaBoost model. 

However, the Random Forest model has a lower true negative rate than the AdaBoost model. 
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Figure 7.4 AdaBoost Confusion Matrix 

 

Figure 7.5 Random Forest Confusion Matrix 

 

Breaking down these figures, the accuracy of the AdaBoost and Random Forest models can be 

calculated using the accuracy formula as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
=  

6092+29223

6092+ 29223+5164+ 2354
=

35315

42833
= 0.8241 ≈ 82%,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
=  

7081 + 29064

7081 +  29064 + 4175 +  2513
=

36145

42833
= 0.8438 ≈ 84% 

While both the accuracies are reasonable, Random Forest indicates higher detection accuracy. 

Further analysis of the results was conducted to ensure the models are independent of the 

Accuracy Paradox. The precision and recall are calculated for both the normal and malicious 

instances. For example, the values for malicious detection are calculated from the confusion 

matrix as; 

𝑅𝑒𝑐𝑎𝑙𝑙_𝑎𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
=

6092

6092 + 5164
=  

6092

11256
= 0.541 ≈ 54% 

And, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑑𝑎𝐵𝑜𝑜𝑠𝑡 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
=  

6092

(6092 + 2354)
=  

6092

8446
= 0.721 ≈ 72%   

The precision and recall for the normal traffic data can also be calculated using a similar 

approach. All the precision, recall, f1-score, and cross-validation score values for both 

AdaBoost and Random Forest are shown in Table 7.4 and Table 7.5 respectively. 

Table 7.4 AdaBoost results for scenario 1 

AdaBoost Normal Malicious Weighted Avg 

Precision 85% 72% 82% 
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Recall 93% 54% 82% 

F1-score 89% 62% 82% 

Cross Val Score 82.42% 

 

Table 7.5 Random Forest results for scenario 1 

Random Forest Normal Malicious Weighted Avg 

Precision 87% 74% 84% 

Recall 92% 63% 84% 

F1-score 90% 68% 84% 

Cross Val Score 84.42% 

 

Although the AdaBoost model predicted 11256 instances as malicious instead of 8446 

instances, it was able to predict malicious instances correctly 54% of the time, while the RF 

model predicted malicious instances correctly 63% of the time. In addition, out of 8446 

malicious instances, AdaBoost was able to correctly identify only malicious instances 72 % of 

the time, while RF only identified relevant instances 74% of the time. However, the cross-

validation score for AdaBoost is 82.4% while RF obtained a validation score of 84.4%. 

Graphically the difference of obtained precision values for both models is illustrated in Figure 

7.6. From Figure 7.7, it is evident that random forest is more precise in detecting normal and 

malicious traffic than AdaBoost when detecting TCP flood attacks in the network. The poor 

performance of AdaBoost can be due to the fact that AdaBoost is very sensitive to noisy data 

and outliers while in RF, outliers can easily be detected and don’t affect the performance. 

 

Figure 7.6 Comparison of precision values in TCP flood detection 
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Figure 7.7 AdaBoost and Random Forest Recall results for TCP flood attack 

When the recall is considered for both models, the results obtained indicate that Random Forest 

obtained higher precision than AdaBoost. However, for the normal traffic, little difference is 

observed compared to the recall of malicious traffic. The f1-score, which is the harmonic mean 

between precision and recall, is also presented in Figure 7.8 for both normal and malicious 

traffic. Considering that Random Forest indicated better performance in both precision and 

recall, the f1-score also emphasises Random Forest’s supremeness in detecting TCP flood 

attacks in the SDN environment. 

 

 

Figure 7.8 AdaBoost and Random Forest F1-score for TCP flood detection  
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To further show that the Random Forest model performed better than the AdaBoost model, it 

obtained an 87 % area under the ROC curve, while the AdaBoost model obtains 85%, as shown 

in Figure 7.9. Although Random Forest outperforms AdaBoost in this scenario, the difference 

is minimal, thus both models are effective. 

 

Figure 7.9 AdaBoost and Random Forest ROC curves 

 

7.3.2. ICMP flooding attack detection 

The second scenario also consists of a total of 129 795 samples, where 91 269 are normal 

instances, and the remaining 38 526 instances are malicious. The models, in this case, were 

tested using 42 833 instances containing 30 078 normal instances and 12 755 malicious 

instances. The training and testing data configurations are shown in Table 7.6. The resultant 

AdaBoost model based on those configurations is evaluated. 

Table 7.6 Scenario 2 dataset configuration 

Scenario 2 Normal Malicious Total 

Train 61 191 25 771 86 962 

Test 30 078 12 755 42 833 

Total  91 269 38 526 129 795 

 

The dataset used was generated based on Scenario 2, which simulated an ICMP flood attack 

from a node in the SDN tactical network. The AdaBoost and Random Forest models were 

created and tested based on the configuration presented in Table 7.7. The confusion matrix of 

the resultant models is presented in Figure 7.10 and Figure 7.11. The AdaBoost model 
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misclassified 4124 normal instances as malicious and 4346 malicious instances as normal. In 

this regard AdaBoost classified less malicious instances. 

The Random Forest model misclassified 2057 normal instances as malicious and 6475 

malicious instances as normal. More than half of the malicious instances were classified as 

normal by the Random Forest classifier. From the confusion matrix presented, Figure 7.10 and 

Figure 7.11, each model’s accuracy can be calculated using the same approach used in the first 

scenario. 

 

 

Figure 7.10 AdaBoost Confusion Matrix 

 

Figure 7.11 Random Forest Confusion Matrix 
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The precision, recall, f1-score, and cross-validation scores for AdaBoost and Random Forest 

are presented in Table 7.7 and Table 7.8. 

Table 7.7 AdaBoost results for ICMP flood detection 

AdaBoost Normal Malicious Weighted Avg 

Precision 86% 67% 80% 

Recall 86% 66% 80% 

F1-score 86% 67% 80% 

Cross Val Score 80.23% 

 

Table 7.8 Random Forest results for ICMP flood detection 

Random Forest Normal Malicious Weighted Avg 

Precision 81% 75% 79% 

Recall 93% 49% 80% 

F1-score 87% 60% 79% 

Cross Val Score 80.23% 

 

The results obtained for scenario 2, which aims to validate the effectiveness of the models in 

detecting an ICMP flood attack indicate that Random Forest can precisely detect both normal 

and malicious traffic compared to the AdaBoost model, this is illustrated by the visualisation 

in Figure 7.12. 

 

Figure 7.12 AdaBoost and Random Forest precision in ICMP flood detection 

When the recall is considered, Figure 7.13, Random Forest also demonstrates superior 

performance compared to AdaBoost. However, the difference in recall for Random Forest and 

AdaBoost is minimal compared to the precision value difference of the models. 
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Figure 7.13 AdaBoost and Random Forest recall in ICMP flood detection 

The f1-score calculated using both the precision and recall for the models is graphically 

presented in Figure 7.14. 

 

Figure 7.14 AdaBoost and Random Forest f1-score in ICMP flood detection 

A model with a high f1-score is defined better-performing since it demonstrates effectiveness 

in classifying instances into their respective categories correctly. Figure 7.14 shows that 

Random Forest is more effective than AdaBoost in classifying normal and malicious instances. 

However, the difference is minimal for all the data points in the set used. The ROC curve for 

both models in an ICMP flood attack is presented in Figure 7.15.   
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Figure 7.15 ROC curve for AdaBoost and Random Forest in ICMP flood detection 

While Random Forest demonstrated superior performance in some cases of precision, recall, 

and f1-score, plotting the true false-positive rate and true positive rate suggests that both models 

yield the same level of effectiveness. As in the case of their detection accuracy where they 

obtain the same accuracy of 80 %, they obtained the same value of 85% AUC as well. Thus, 

for ICMP flood detection both models achieved the same level of performance, which may be 

the result of the data containing no outliers and both models were able to generalise very well. 

7.3.3. DDoS attack detection 

The third test case validates the ensemble models’ effectiveness in detecting a DDoS attack 

issued by two nodes to a single target node in the SDN network. The configuration of the 

dataset used to build and evaluate the ML models for this scenario is presented in Table 7.9. 

Table 7.9 Scenario 3 dataset configuration 

Scenario 3 Normal Malicious Total 

Train 49 659 37 303 86 962 

Test 24 494 18 339 42 833 

Total  95 993 33 802 129 795 

The results of the ensemble models built using the configuration in Table 7.9 indicated 

acceptable performance. The AdaBoost model misclassified 5188 normal instances as 

malicious and 6112 malicious instances as normal, while in Random Forest 4685 normal 

instances were misclassified as malicious and 4280 malicious instances were classified as 
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normal. The confusion matrix of both models is presented in Figure 7.16 and Figure 7.17, 

respectively. 

 

 

Figure 7.16 AdaBoost Confusion Matrix 

 

Figure 7.17 Random Forest Confusion Matrix 

Both the obtained accuracies are fair considering that they are above 70%. However, Random 

Forest achieved 79% which indicates a 21% error, while AdaBoost obtains accuracy of 74% 

with an error of 26%. 

From the confusion matrix values, the precision, recall, and F1-score were calculated. The 

figures are shown in Table 7.10 and Table 7.11. The results indicate that Random Forest can 

successfully classify flow data instances more correctly than AdaBoost. For example, 

AdaBoost correctly classifies malicious instances 70 % of the time, while Random Forest can 

classify malicious instances correctly 75% of the time. The cross-validation score for Random 

Forest is also higher than AdaBoost.  

Table 7.10 AdaBoost result in DDoS attack detection 

AdaBoost Normal Malicious Weighted Avg 

Precision 76% 70% 73% 

Recall 79% 67% 74% 

F1-score 77% 68% 74% 

Cross Val Score 74.13% 

 

Table 7.11 Random Forest result in DDoS attack detection 

Random Forest Normal Malicious Weighted Avg 

Precision 82% 75% 79% 

Recall 81% 77% 79% 

F1-score 82% 76% 79% 

Cross Val Score 79.05% 
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Figure 7.18 presents the precision values for normal, malicious, and average for both AdaBoost 

and Random Forest. The graph clearly shows that Random forest outperforms AdaBoost in 

classifying instances correctly most of the time since the obtained precision values are higher 

than AdaBoost. 

 

Figure 7.18 AdaBoost and Random Forest precision in DDoS attack detection 

Between the AdaBoost and Random Forest models, Random Forest demonstrated high recall 

rates compared with AdaBoost, shown in Figure 7.19. Random Forest also demonstrated 

superior performance when the f1-score measure is considered, shown in Figure 7.20, as it is 

the harmonic mean between the precision and recall of the model. 

 

 

Figure 7.19 AdaBoost and Random Forest recall in DDoS attack detection 
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Figure 7.20 AdaBoost and Random Forest f1-score in DDoS attack detection 

Another important metric is the AUC obtained from the ROC curve plotted for false-positive 

rate and true positive rate, as illustrated by Figure 7.21. AdaBoost obtained an AUC of 80% 

while Random Forest obtained 82%. This indicates that Random Forest outperformed 

AdaBoost in DDoS attack detection. RF is capable of conducting unsupervised clustering and 

outlier detection in the training dataset, which is effective in the detection of DDoS attacks 

since the traffic generated by a DDoS attack contains many different types of packets with 

different source addresses. This becomes a limitation to AdaBoost as the presence of outliers 

affects its performance. 

 

Figure 7.21 AdaBoost and Random Forest ROC AUC for DDoS attack detection 
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7.4. Discussion and Analysis 

As presented in Chapter 4, ensemble learning methods using Decision Tree as their base 

estimator illustrated high detection performance compared to the other Machine Learning 

algorithms. This is due to the fact that an ensemble method can learn more than one pattern 

present in the data which improves detection rates compared to a single learning classifier 

which can only learn a single pattern from the data. 

Among the ensemble learners, RF and AdaBoost were chosen for implementation in the 

proposed SFIDS. Their implementation was evaluated in three test cases. These test cases 

evaluate SFIDS’s effectiveness in detecting TCP flooding attacks, ICMP flooding attacks, and 

DDoS attacks.  

The first observation from the results is the difference in performance before and after 

parameter tuning. Parameter tuning plays a critical role in ensuring best-performance in ML 

algorithms as it describes the optimal architecture and parameters for high detection 

performances. Nevertheless, some algorithms can yield high performances without any tuning, 

while others may require tuning before achieving acceptable detection performances. Table 

7.12 presents the AUC scores before and after parameter tuning. Before tuning, the RF 

algorithm was only able to achieve an AUC score of 77% and 87% after tuning, in the first test 

case. The same behaviour is also applicable to the AdaBoost algorithm. Therefore, after tuning, 

RF outperformed AdaBoost when detecting TCP flood attacks (test case 1). For ICMP flood 

detection (test case 2), both classifiers obtained the same level of performance. Finally, 

Random Forest demonstrated superior performance in detecting DDoS attacks (test case 3) 

when compared with AdaBoost. Hence, parameter tuning becomes a necessity in ensuring 

optimal performance from the chosen algorithms. 

Table 7.12 AUC score before and after parameter tuning 

AUC scores 

(Before and after 

tuning) 

AdaBoost (Zwane, 

Tarwireyi and 

Adigun, 2019c) 

AdaBoost 

(Tuned) 

Random Forest 

(Zwane, Tarwireyi and 

Adigun, 2019c) 

Random 

Forest 

(tuned) 

Test Case 1 77% 85% 77% 87% 

Test Case 2 71% 85% 71% 85% 

Test Case 3 84% 80% 59% 82% 
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Conversely, since IDS are designed to be practical defence tools, their performance should 

ideally be  tested in the real world. Yet, research studies that reveal this boundary are rare, 

while most studies in the research community studying IDS evaluate their IDS tools using only 

data sets (Haq, Onik and Shah, 2015; Khan et al., 2018; Tang et al., 2018; Khraisat et al., 

2019).  In this study, we exposed the models that have been trained and evaluated on two data 

sets to real-world deployment. It was expected that the classification performance obtained 

from the data set evaluation would hold. However, the experiments revealed that this 

assumption is not correct. As it can be seen From Table 7.13, the difference in performance 

can be severe, with up to 15% - 25% difference in accuracy and AUC scores. 

Table 7.13 Comparison of ML using data sets and Implementation 

Metric Algorithm CIDDS-001 UNSW-NB15 Implementation (SDN) 

Accuracy AdaBoost 99.15% 90.3% 74.13% - 82.42% 

 RF 99.14% 90.2% 79.05% - 84.42% 

AUC AdaBoost 100% 96.8% 80% - 87% 

 RF 99.9% 98.1% 82% - 85% 

As presented in Table 7.13, SFIDS utilising a Random Forest model obtained 99% precision 

and recall in the CIDDS-001 datasets, and was only able to obtain an average of 84% in the 

first deployment scenario, 79% in the second scenario, and 79% in the third scenario. This 

applies as evidence that better performance in dataset analysis does not imply better 

performance in production, hence the performance may depreciate. These results were also 

confirmed by utilising an AdaBoost model in the IDS, as it also obtained 99% in the CIDDS-

001 dataset but in deployment, it achieved an average of 82% in the first scenario, 80% in the 

second scenario, and 74% in the third scenario. Therefore, we recommend that network security 

researchers may consider a test-bed or an actual implementation for the evaluation of IDS that 

uses ML techniques in addition to the traditional method of only using datasets. 

  



117 
 

Chapter 8: Conclusion and Future Work 

This chapter aims to summarise and conclude this study. The chapter summaries the research 

problem introduced in Chapter 1, followed by the research questions and how they were 

answered in this study. Finally, the recommendations for future work and the limitations are 

discussed. 

8.1.  Problem Summary 

The nature of the environment in which tactical networks are deployed introduces several 

issues for intrusion detection security mechanisms. This is because they are deployed in 

different terrain types, which include: urban areas, forests, hills, and the sea. All these 

deployment areas introduce different interference characteristics, which cause instabilities in 

the network, as a result, network packets get corrupted and dropped. Intrusion detection 

methods see such behaviours as malicious and result in high false detection rates. Hence, this 

clearly presents the need for an IDS capable of precise detection of hostile nodes in a hostile 

environment. 

With recent innovation in technology, the goal of this study was to investigate and implement 

the most suitable Machine Learning algorithm using SDN for intrusion detection in tactical 

Mobile Ad-hoc Networks. 

8.2.  Research Questions 

To address the problem, the author took into consideration one main research question: 

How can an intrusion detection system (IDS) that promptly and accurately recognises 

cyberwarfare attacks in tactical networks be designed and implemented? 

From this research question, four sub-research questions arose. The questions and how the 

research addressed each of them are presented below. 

1.  Which ML algorithms are more suitable for intrusion detection in tactical 

networks? 

To address this sub-question, first, it was necessary to understand network intrusion detection 

techniques and issues in the tactical network domain. This was achieved through background 

study and literature review in Chapter 2. Secondly, in Chapter 4 experiments were conducted 
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to evaluate and compare the algorithms using network intrusion detection system evaluation 

datasets. The experiments used both packet-based and flow-based network datasets to evaluate 

different Decision Tree-based, probabilistic-based, and non-probabilistic-based machine 

learning algorithms. From the experiments, it was observed that the Decision Tree-based 

methods demonstrated outstanding performance in terms of detection rate and classification 

time when compared to the probabilistic and non-probabilistic Machine Learning algorithms, 

such as Naïve Bayes and Support Vector Machines. Furthermore, ensemble learning techniques 

using Decision Tree as the base estimator demonstrated even better detection rates than the 

normal single learner Decision Tree. Specifically, Random Forest and AdaBoost were the top 

two to achieve a high detection rate with an acceptable training and classification time when 

compared to other ensemble methods, such as Bagging, and Majority Voting utilising 

probabilistic and then non-probabilistic algorithms as their base learner methods. Thus, it was 

concluded that Random Forest and AdaBoost using Decision Tree as the base estimator are the 

most suitable machine learning algorithms for intrusion detection in military hostile 

environment deployment scenarios.  

2. How can we design an effective IDS model for tactical networks? 

This research question was addressed using the Design Science (DS) methodology. DS was 

adopted because it offers an important paradigm for conducting applicable and yet rigorous 

research. Hence the study applied the DS methodology by following the DS research processes 

introduced by Peffers et al., (2007). To design an IDS model for tactical battlefield networks, 

technologies, and state-of-the-art paradigms with the potential to help achieve low false 

detection and recognition totality in tactical battlefield networks were investigated. At first, the 

better performing ML algorithms were determined using network intrusion datasets, in Chater 

4. SDN was then identified as the best solution which can allow efficient data collection and 

real-time global view of all the network devices connected in the network. Hence, in Chapter 

5 the study designed an IDS model that takes advantage of SDN for efficient flow sampling 

and preparation. The model further uses the better performing ML algorithm to achieve high 

detection rates and accuracy in military tactical MANETs. In that regard, SDN combined with 

an efficient ML model can produce an intelligent IDS that is capable of acquiring data from 

the tactical network devices, processing and analysing such data to identify intrusive 

behaviours and be able to take countermeasures in real-time without any human intervention.  

3.  How can the designed IDS model be implemented and operationalised? 
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The tactical MANETs usually contain many different handhelds; unmanned aerial vehicles 

(UAVs); intelligence, surveillance, and reconnaissance (ISR) devices; mobile networking; and 

computing environments to be carried onto various platforms such as tanks, ships, or vehicles. 

To imitate this environment and demonstrate the operationalisation of the proposed IDS model, 

a network emulation tool known as Mininet-Wifi was used. Mininet-Wifi allows researchers 

to implement and evaluate SDN networks. In tactical battlefield networks, flow monitoring and 

sampling can be conducted in the UAV nodes and other network nodes capable of transmitting 

packets from one node to another. Hence in our implementation in Chapter 6, SDN forwarding 

devices are embedded with sFlow sampling techniques, which sample and export network flow 

data from the network to a logically centralised collector node for data cleaning and pre-

processing support intrusion detection tasks. sFlow was adopted for flow collection as it is 

more efficient and a less resource-intensive alternative to the native OpenFlow sampling 

approach used in an SDN environment. The logically centralised flow collector node is 

responsible for preparing the data for analysis using a machine learning classification model 

train with both malicious and normal network flow data. The tools and simulations presented 

in Chapter 6 allowed the replication of the environment and the operationalisation of the model 

designed in Chapter 5. In that regard, we were able to design and implement an IDS model for 

tactical battlefield networks. 

4. What techniques and metrics can be used to evaluate this IDS system? 

To answer this sub-research question, in Chapter 7 three scenarios were simulated and network 

flow data was collected. For each scenario, normal and malicious network traffic was 

generated, such as a TCP flood attack in scenario 1, ICMP flood attack in scenario 2, and a 

DDoS attack in the scenario 3. Experiments were conducted to evaluate the effectiveness of 

the proposed IDS model. The aim was to evaluate the effectiveness of the proposed IDS when 

using either Random Forest and AdaBoost as the classifier to identify malicious nodes, 

recognise internal attacks, and identify and detect DDoS attacks. However, to determine the 

effectiveness of an IDS one has to measure the quality of the IDS in being exact and accurate 

through its predictions. Similarly, the capability of the IDS to remember from its previous 

experience is also important since it has to achieve a high detection rate and recognition totality. 

Therefore, considering the tactical network simulated scenarios and the prototype IDS 

developed, the precision, recall, f-score, and ROC curve metrics were used to evaluate the 

effectiveness of the proposed IDS model. 
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8.3.  Conclusion 

This work presented a flow-based IDS model also regarded as the SFIDS. The study used 

Design Science as the research method for SFIDS development and evaluation. The work 

demonstrated the utility and applicability of the SFIDS through a proof-of-concept 

implementation using SDN, network flows, and Machine Learning techniques for detection. 

The obtained results show that an intrusion detection system (IDS) utilising SDN for data 

collection and ML for data analysis achieves pleasing performance in timeously detecting 

malicious nodes in a hostile environment with high detection rates. However, it is also observed 

that the performance of an ML model varies based on the data presented to it. That is, an ML 

model can obtain a high detection rate when evaluated and analysed in a specific dataset but 

may not obtain the same performance when integrated and deployed in the production 

environment.  

8.4. Recommendation for Future Research 

Network security is steadily becoming a critical factor for businesses, organisations, and 

institutions. While researchers and the academic community are continuously proposing 

security methods and solutions to ensure security in networks. The recommended solutions are 

usually evaluated and validated using network datasets generated a long time ago, such as 

KDD-Cup dataset. Most of the evaluations conducted in such a manner don’t present realistic 

results and can sometimes be misleading. Therefore, researchers in the IDS field should not 

only recommend a classifier as better-performing in the evaluation datasets but also in the 

deployment scenarios. It is necessary that researchers evaluate their IDSs using recent datasets 

and real-life deployment scenarios to obtain more realistic and accurate results.  

Also, the work proposed here demonstrated the effectiveness of just a few ensemble algorithms. 

The work can be extended by evaluating the effectiveness of other Machine Learning 

algorithms such as deep learning. The creation of military-specific datasets and simulation 

topologies in which these datasets can be replayed is a critical factor that can improve research 

done for tactical networks’ security. 

8.5.  Limitations 

One of the major drawbacks of this research was the lack of tactical network evaluation datasets 

that can be used to validate and evaluate intrusion detection systems designed for tactical 
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scenarios. Also, while Mininet-Wifi presents the platform for realising SDN- based research, 

the simulated tactical network lacks characteristics of a military hostile environment. In 

addition, due to the storage and simulation environment, a limited number of instances were 

sampled from the network, which we suspect could negatively affect the performance. 

  



122 
 

References 

Alsmadi, I. M. and AlEroud, A. (2017) ‘SDN-based real-time IDS/IPS alerting system’, in 

Studies in Computational Intelligence, pp. 297–306. doi: 10.1007/978-3-319-44257-0_12. 

Amaral, P. et al. (2016) ‘Machine learning in software defined networks: Data collection and 

traffic classification’, Proceedings - International Conference on Network Protocols, ICNP, 

2016-Decem(NetworkML), pp. 1–5. doi: 10.1109/ICNP.2016.7785327. 

Atlam, H. F., Walters, R. J. and Wills, G. B. (2018) ‘Internet of Nano Things’, (October), pp. 

71–77. doi: 10.1145/3264560.3264570. 

Ayash, M. (2014) ‘Research Methodologies in Computer Science and Information Systems’, 

Computer Science, 2014, pp. 1–4. 

Berde, P. et al. (2014) ‘ONOS : Towards an Open , Distributed SDN OS’, HotSDN ’14 

Proceedings of the third workshop on Hot topics in software defined networking, pp. 1–6. 

doi: 10.1145/2620728.2620744. 

Bhunia, S. S. and Gurusamy, M. (2017) ‘Dynamic Attack Detection and Mitigation in IoT 

using SDN’. 

Biondi, P. (2017) ‘Scapy Documentation’. doi: 10.1016/j.physrep.2008.09.003. 

Boero, L., Marchese, M. and Zappatore, S. (2017) ‘Support Vector Machine Meets Software 

Defined Networking in IDS Domain’, in Proceedings of the 29th International Teletraffic 

Congress, ITC 2017. doi: 10.23919/ITC.2017.8065806. 

Botelho, F. et al. (2014) ‘SMaRtLight: A Practical Fault-Tolerant SDN Controller’, pp. 1–7. 

Available at: http://arxiv.org/abs/1407.6062. 

Boutaba, R. et al. (2018) ‘Open Access A comprehensive survey on machine learning for 

networking : evolution , applications and research opportunities’. Journal of Internet Services 

and Applications. 

Buczak, A. L. and Guven, E. (2016) ‘A Survey of Data Mining and Machine Learning 

Methods for Cyber Security Intrusion Detection’, 18(2), pp. 1153–1176. 

Burbank, J. L. et al. (2006) ‘Key challenges of military tactical networking and the elusive 

promise of MANET technology’, IEEE Communications Magazine. IEEE, 44(11), pp. 39–45. 

doi: 10.1109/COM-M.2006.248156. 



123 
 

Cai, Z., Cox, A. L. and Ng, T. S. E. (2010) ‘Maestro : A System for Scalable OpenFlow 

Control - Technical Report TR10-08’. 

Carpenter, G. A. et al. (1992) ‘Fuzzy ARTMAP: A Neural Network Architecture for 

Incremental Supervised Learning of Analog Multidimensional Maps’, IEEE Transactions on 

Neural Networks, 3(5), pp. 698–713. doi: 10.1109/72.159059. 

Carvalho, J. M. A. and Costa, P. C. G. (2016) ‘Collaborative Approach for a MANET 

Intrusion Detection System using Multilateration’, 2016 11th International Conference on 

Computer Engineering & Systems (ICCES). IEEE, pp. 59–65. doi: 

10.1109/ICCES.2016.7821976. 

Chang, R. J. et al. (2013) ‘Extremely Lightweight Intrusion Detection ( ELIDe )’, 

(December). 

Chen, X. et al. (2018) ‘Ensemble Learning Methods for Power System Cyber-Attack 

Detection’, 2018 IEEE 3rd International Conference on Cloud Computing and Big Data 

Analysis (ICCCBDA). IEEE, pp. 613–616. doi: 10.1109/ICCCBDA.2018.8386588. 

Choudhary, G. et al. (2018) ‘Intrusion Detection Systems for Networked Unmanned Aerial 

Vehicles : A Survey’. 

Demeyer, S. (2011) ‘Research methods in computer science’, IEEE International Conference 

on Software Maintenance, ICSM. IEEE, p. 600. doi: 10.1109/ICSM.2011.6080841. 

Division, C. S. et al. (1997) ‘Bayesian Network Classifiers *’, 163, pp. 131–163. 

Djuris, J. (2012) ‘Design Space Approach in Optimization of Fluid Bed Granulation and 

Tablets The cientific WorldJOURNAL Research Article Design Space Approach in 

Optimization of Fluid Bed’, (May 2014). doi: 10.1100/2012/185085. 

Dunning, T. and Friedman, E. (2014) Practical Machine Learning: A New Look At Anomaly 

Detection. 

Erickson, D. (2013) ‘The beacon openflow controller’, p. 13. doi: 10.1145/2491185.2491189. 

Ertam, F., Õ, F. Õ. K. and Yaman, O. (2017) ‘Intrusion Detection in Computer Networks via 

Machine Learning Algorithms’. 

Fahad, M., Sher, M. and Bi, Y. (2017) ‘Flow-based intrusion detection : Techniques and 

challenges’, Computers & Security. Elsevier Ltd, 70, pp. 238–254. doi: 



124 
 

10.1016/j.cose.2017.05.009. 

Fontes, R. R. et al. (2015) ‘Mininet-WiFi : Emulating Software-Defined Wireless Networks’. 

Giotis, K. et al. (2014) ‘Combining OpenFlow and sFlow for an effective and scalable 

anomaly detection and mitigation mechanism on SDN environments’, (February 2016). doi: 

10.1016/j.bjp.2013.10.014. 

Gogoi, P., Bhuyan, M. H. and Bhattacharyya, D. K. (2012) Packet and Flow Based Network 

Intrusion Dataset. 

Govindarajan, M. and Chandrasekaran, R. (2012) ‘Intrusion Detection using an Ensemble of 

Classification Methods’, Proceedings of the World Congress on Engineering and Computer 

Science, I(October). 

Haq, N. F., Onik, A. R. and Shah, F. M. (2015) ‘An Ensemble Framework of Anomaly 

Detection using Hybridized Feature Selection Approach ( HFSA )’, 2015 SAI Intelligent 

Systems Conference (IntelliSys). IEEE, pp. 989–995. doi: 10.1109/IntelliSys.2015.7361264. 

Hebb, D. O. (1949) The Organization of Behavior. 

Hevner, A. R. et al. (2004) ‘Research Essay Design Science in Information’, MIS Quarterly, 

28(1), pp. 75–105. 

Hofstede, R. et al. (2014) ‘Flow Monitoring Explained : From Packet Capture to Data 

Analysis With NetFlow and IPFIX’, 16(4), pp. 2037–2064. 

Illy, P. et al. (2019) ‘Securing Fog-to-Things Environment Using Intrusion Detection System 

Based On Ensemble Learning’, (April), pp. 15–18. 

Jabbar, M. A. et al. (2017) ‘ScienceDirect ScienceDirect RFAODE : A Novel Ensemble 

Intrusion Detection System’, Procedia Computer Science. Elsevier B.V., 115, pp. 226–234. 

doi: 10.1016/j.procs.2017.09.129. 

Jeung, J., Jeong, S. and Lim, J. (2011) ‘Adaptive Rapid Channel-hopping Scheme Mitigating 

Smart Jammer Attacks in Secure WLAN’, pp. 1231–1236. 

Ji Qing et al. (2015) ‘An SDN-based resource pre-combination dispatching strategy in 

military network’, in, pp. 6 .-6 . doi: 10.1049/cp.2015.0834. 

Karresand, M. (2004) ‘Intrusion Analysis in Military Networks – An Introduction Technical 

report Intrusion Analysis in Military Networks – An Introduction’, (December). 



125 
 

Khan, S. et al. (2018) ‘Feature Selection of Denial-of-Service Attacks Using Entropy and 

Granular Computing’, Arabian Journal for Science and Engineering. Springer Berlin 

Heidelberg, 43(2), pp. 499–508. doi: 10.1007/s13369-017-2634-8. 

Khraisat, A. et al. (2019) ‘Survey of intrusion detection systems: techniques, datasets and 

challenges’, Cybersecurity. Cybersecurity, 2(1). doi: 10.1186/s42400-019-0038-7. 

Kidston, D. et al. (2010) ‘Mitigating security threats in tactical networks’, … Communication 

and Networks, …, pp. 1–14. Available at: 

http://ftp.rta.nato.int/public/PubFullText/RTO/MP/RTO-MP-IST-092/MP-IST-092-20.doc. 

Koponen, T. et al. (2010) ‘【8】Onix A Distributed Control Platform for Large.pdf’. 

Kurdziel, M. T. (2014) ‘Cyber threat model for tactical radio networks’, Wireless Sensing, 

Localization, and Processing IX, 9103(June), p. 910305. doi: 10.1117/12.2047582. 

Liu, T. et al. (2018) ‘Intrusion Detection of Data Platform Based on Extreme Learning 

Machine in Civil and Military Integration’, (Csse), pp. 296–306. 

Madhu, A. and Sreekumar, A. (2014) ‘Wireless Sensor Network Security in Military 

Application using Unmanned Vehicle’, IOSR Journal of Electronics and Communication 

Engineering (IOSR-JECE), pp. 8–51. 

Marcus, K. M. et al. (2019) ‘An Environment for Tactical SDN Experimentation’, MILCOM 

2018 - 2018 IEEE Military Communications Conference (MILCOM). IEEE, pp. 1–9. doi: 

10.1109/milcom.2018.8599775. 

McCulloch, W. S. and Pitts, W. H. (1943) ‘originally published in: Bulletin of Mathematical 

Biophysics, Vol. 5, 1943, p. 115-133’, 5, pp. 115–133. 

Metcalf, T. R. and Lapadula, L. J. (2000) ‘Intrusion Detection System Requirements A 

Capabilities Description in Terms of the Network Monitoring and Assessment Module of’. 

Michalos, A. C. and Simon, H. A. (1970) The Sciences of the Artificial, Technology and 

Culture. doi: 10.2307/3102825. 

Monshizadeh, M., Khatri, V. and Kantola, R. (2017) ‘An adaptive detection and prevention 

architecture for unsafe traffic in SDN enabled mobile networks’, in Proceedings of the IM 

2017 - 2017 IFIP/IEEE International Symposium on Integrated Network and Service 

Management. doi: 10.23919/INM.2017.7987395. 



126 
 

Moustafa, N., Slay, J. and Technology, I. (2015) ‘Intrusion Detection systems’. 

Nguyen, T. N. (2018) ‘The Challenges in SDN/ML Based Network Security : A Survey’. 

Available at: http://arxiv.org/abs/1804.03539. 

Pawgasame, W. and Wipusitwarakun, K. (2015) ‘Tactical wireless networks: A survey for 

issues and challenges’, 2015 Asian Conference on Defence Technology (ACDT), pp. 97–102. 

doi: 10.1109/ACDT.2015.7111592. 

Pedregosa, F., Weiss, R. and Brucher, M. (2011) ‘Scikit-learn : Machine Learning in Python’, 

12, pp. 2825–2830. 

Peffers, K. et al. (2007) ‘A Design Science Research Methodology for Information Systems 

Research’, Journal of Management Information Systems, 24(3), pp. 45–77. doi: 

10.2753/MIS0742-1222240302. 

Poularakis, K., Iosifidis, G. and Tassiulas, L. (2018) ‘SDN-enabled Tactical Ad Hoc 

Networks : Extending Programmable Control to the Edge’. 

Pushpa, M. and Kathiravan, A. (2016) ‘Cross-layer based multiclass intrusion detection 

system for secure multicast communication of MANET in military networks’, Wireless 

Networks. Springer US, 22(3), pp. 1035–1059. doi: 10.1007/s11276-015-1065-2. 

Revathi, S. and Malathi, A. (2013) ‘A Detailed Analysis on NSL-KDD Dataset Using 

Various Machine Learning Techniques for Intrusion Detection’, 2(12), pp. 1848–1853. 

Rhodes, B. J. et al. (2005) ‘Maritime situation monitoring and awareness using learning 

mechanisms’, Proceedings - IEEE Military Communications Conference MILCOM. IEEE, 

2005, pp. 646-652 Vol. 1. doi: 10.1109/MILCOM.2005.1605756. 

Ring, M et al. (2017) ‘Flow-based benchmark data sets for intrusion detection’, European 

Conference on Information Warfare and Security, ECCWS, pp. 361–369. Available at: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85028023805&partnerID=40&md5=1e95f767994dde4a33199aa24418b078. 

Ring, Markus et al. (2017) ‘Technical Report CIDDS-001 data set’, 001, pp. 1–13. 

Shin, S. et al. (2014) ‘Rosemary : A Robust , Secure , and High-Performance Network 

Operating System Categories and Subject Descriptors’, Ccs, pp. 78–89. 

Spencer, J. et al. (2016) ‘Towards a tactical software defined network’, 2016 International 



127 
 

Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7. doi: 

10.1109/ICMCIS.2016.7496552. 

Sterbenz, J. P. G. et al. (2002) ‘Survivable Mobile Wireless Networks : Issues , Challenges , 

and Research Directions’. 

Stoyanova Todorova, M. and Todorova, S. T. (2016) DDoS Attack Detection in SDN-based 

VANET Architectures. 

Sultana, N. et al. (2018) ‘Survey on SDN based network intrusion detection system using 

machine learning approaches Survey on SDN based network intrusion detection system using 

machine learning approaches’. Peer-to-Peer Networking and Applications, (January). doi: 

10.1007/s12083-017-0630-0. 

Sultana, N. et al. (2019) ‘Survey on SDN based network intrusion detection system using 

machine learning approaches’, Peer-to-Peer Networking and Applications. Peer-to-Peer 

Networking and Applications, 12(2), pp. 493–501. doi: 10.1007/s12083-017-0630-0. 

Svenmarck, P. et al. (no date) ‘Possibilities and Challenges for Artificial Intelligence in 

Military Applications’, pp. 1–16. 

Tang, T. A. et al. (2018) ‘Deep Recurrent Neural Network for Intrusion Detection in SDN-

based Networks’, 2018 4th IEEE Conference on Network Softwarization and Workshops, 

NetSoft 2018. IEEE, (NetSoft), pp. 462–469. doi: 10.1109/NETSOFT.2018.8460090. 

Tootoonchian, A. (2010) ‘Hyperflow.Pdf’. 

Tootoonchian, A. et al. (2012) ‘On Controller Performance in Software-Defined Networks’, 

Presented as part of the 2nd USENIX Workshop on Hot Topics in Management of Internet, 

Cloud, and Enterprise Networks and Services, p. 55. doi: 10.1145/2491185.2491199. 

Verma, A. and Ranga, V. (2018) ‘Statistical analysis of CIDDS-001 dataset for Network 

Intrusion Detection Systems using Distance-based Machine Learning’, Procedia Computer 

Science. Elsevier B.V., 125, pp. 709–716. doi: 10.1016/j.procs.2017.12.091. 

Viinikka, J. et al. (2009) ‘Processing intrusion detection alert aggregates with time series 

modeling’, Information Fusion. Elsevier B.V., 10(4), pp. 312–324. doi: 

10.1016/j.inffus.2009.01.003. 

Vijayanand, R., Devaraj, D. and Kannapiran, B. (2018) ‘Intrusion detection system for 



128 
 

wireless mesh network using multiple support vector machine classifiers with genetic-

algorithm-based feature’, Computers & Security. Elsevier Ltd, 77, pp. 304–314. doi: 

10.1016/j.cose.2018.04.010. 

Visible, N. and Packard, H.- (2003) ‘Switch / Router’. 

Wilson, C. (2004) ‘CRS Report for Congress Received through the CRS Web Network 

Centric Warfare : Background and’. 

Wrona, K. and Szwaczyk, S. (2017) ‘SDN testbed for validation of cross-layer data-centric 

security policies’, pp. 1–6. doi: 10.1109/ICMCIS.2017.7956483. 

Yan, Q. et al. (2016) ‘Software-Defined Networking ( SDN ) and Distributed Denial of 

Service ( DDoS ) Attacks in Cloud Computing Environments : A Survey , Some Research 

Issues , and Challenges’, 18(1), pp. 602–622. 

Ye, N. et al. (2002) ‘Multivariate statistical analysis of audit trails for host-based intrusion 

detection’, IEEE Transactions on Computers, 51(7), pp. 810–820. doi: 

10.1109/TC.2002.1017701. 

Yoon, C. et al. (2015) ‘Enabling security functions with SDN: A feasibility study’, Computer 

Networks, 85, pp. 19–35. doi: 10.1016/j.comnet.2015.05.005. 

Yuill, J. et al. (2000) ‘Intrusion-detection for incident-response , using a military battle ® eld-

intelligence process’, 34, pp. 671–697. 

Zaidi, N. A. et al. (2017) ‘Efficient parameter learning of Bayesian network classifiers’, 

Machine Learning. Springer US, 106(9–10), pp. 1289–1329. doi: 10.1007/s10994-016-5619-

z. 

Zaman, M. (2018) ‘Evaluation of Machine Learning Techniques for Network Intrusion 

Detection’, NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management 

Symposium. IEEE, pp. 1–5. 

Zumel, N. and Mount, J. (2014) Practical Data Science with R. Manning Publications. 

Zwane, S., Tarwireyi, P. and Adigun, M. (2019a) ‘A Flow-based IDS for SDN-enabled 

Tactical Networks’, International Multidisciplinary Information Technology and Engineering 

Conference (IMITEC). 

Zwane, S., Tarwireyi, P. and Adigun, M. (2019b) ‘Ensemble learning approach for Flow 



129 
 

based Intrusion Detection System’, IEEE AFRICON, pp. 0–7. 

Zwane, S., Tarwireyi, P. and Adigun, M. (2019c) ‘Ensemble learning for Flow based IDS : A 

SDN Implementation’, Southern Africa Telecommunication Networks and Applications 

Conference (SATNAC). 

Zwane, S., Tarwireyi, P. and Adigun, M. (2019d) ‘Performance Analysis of Machine 

Learning Classifiers for Intrusion Detection’, 2018 International Conference on Intelligent 

and Innovative Computing Applications (ICONIC). IEEE, pp. 1–5. doi: 

10.1109/iconic.2018.8601203. 

 


