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ABSTRACT

Theory refinement in Probabilistic Knowledge Representations is the task of up-

dating the Graphical Network structure in light of observations inconsistent with the

current network structure. However, in the literature on Belief Change in Probabilis-

tic Knowledge Representations, theory refinement is only thought of as a change in

the model parameters when data consistent with the Network structure is observed.

Such Belief Change is not rich enough to capture the semantics of Belief Change in

dynamic domains. In dynamic domains, the actual network structure at any given

time is unknown and is unobservable. Only the data emitted from the domain is

observable. Further to the foregoing, the Belief Change Model needs to cater to

both changes necessititated by the correction of incorrect Beliefs (Belief Revision)

and changes necessitated by changes in the domain (Belief Update). This thesis hy-

pothesised a Belief Change Meta-Model for Bayesian Network (BN) based Knowledge

Representation in dynamic domains, and subsequently used the meta-model to de-

fine a Unified Belief Change Model for Bayesian Networks that caters for both Belief

Revision and Belief Update of the Bayesian Network Structure.

The Belief Change Model was conceptualised by first modelling the evolving

Bayesian Network structure as a dynamical system whose impetus for change is driven

by the occurrence of some events in the domain. The derived Unified Belief Change

Model was formally validated by analogy using the Qualitative Belief Change Model

for dynamic environments and the theory of Partially Observable Markov Decision

Processes (POMDP). It was also proven that the proposed Belief Change model meets

the postulates for revision of p-functions.



xvii

Apart from arguing the efficacy of the proposed Unified Belief Change Model from

a theoretical standpoint, this thesis also provides empirical evidence for the same. A

Belief Change operator, the Unified Belief Change Operator for Bayesian Networks

(UBCOBaN ), based on the proposed Belief Change Model was developed. The opera-

tor was then used to illustrate how the model achieves Belief Change using a synthetic

example with one (1) iteration of Belief Change. Further to the fore-going the operator

was implemented in java and was used for evaluating the efficacy of the model in both

Propositional Bayesian Networks and in Multi-Entity Bayesian Networks (MEBN).

MEBN is a variant of First Order Probabilistic Logic (FOPL) this research chose to

use for evaluating the proposed model for Belief Change in First-Order Probabilis-

tic Knowledge Representations. The benchmark propositional Bayesian Networks

used in the study were the ASIA, ALARM, HAILFINDER, HEPAR II, and the AN-

DES Bayesian Networks. The benchmark relational datasets considered for MEBN

were the CORA, WebKP, UW std, and Financial std datasets. The results obtained

showed that the proposed model adheres to the principle of minimal change (prin-

ciple information economy) better than the classical Search-and-Score algorithm in

all the afore-mentioned propositional Bayesian Networks and all the datasets consid-

ered for MEBN. The model was also found to be at least as agile as the classical

Search-and-Score algorithm in instances where data inconsistent with the assumed

network structure was observed. This was observed for all the benchmark proposi-

tional Bayesian Networks used in ths study, and all the relational datasets consid-

ered for MEBN. The results obtained for an investigation on whether Belief Update

improves rationality of the proposed Unified Belief Change Model on propositional

Bayesian Networks showed that the Unified Belief Change Model with Belief Update

has superior performance compared to the one without Belief Update. However, the

superior performance was not statistically significant at 95% Confidence Interval.
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1. INTRODUCTION

“Knowledge has to be improved, challenged, and

increased constantly, or it vanishes.,”

Peter F. Drucker.

1.1 Introductory Background

Knowledge acquisition, representation and management for supporting today’s

increasingly open and dynamic computing environments pose a lot of challenges to

knowledge Engineers. The challenges emanate from the fact that open and dynamic

computing environments are dogged by uncertainty, vagueness, complexity, and mas-

sive data. These factors render manual revision and updating of the Knowledge Bases

infeasible. This has resulted in Artificial Intelligence researchers seeking solutions for

enabling open and dynamic computing environments to automatically update and re-

vise their Knowledge Bases. The emergence of such solutions will not only be benefi-

cial to open and dynamic computing environments, but it will also contribute towards

extending the frontiers of knowledge in the field of Artificial Intelligence towards Ar-

tificial General Intelligence (AGI)(Goertzel, 2014). One of the major impediments to

the development of Artificial Intelligence has been their over dependence on human

beings for the knowledge needed by intelligent systems. This has led to the problem

dubbed the Knowledge Acquisition Bottleneck (Možina et al., 2008). In principle,

Artificial Intelligence seeks to achieve systems that have the hope of overcoming their

problems without human agents holding their hands constantly. “If intelligence is to

be engineered, this is simply a requirement” (Korb & Nicholson, 2004).

The dependence on human agents as the only source of knowledge was one of

the major challenges with the first generation expert systems. It made them too
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brittle. When the problem domain had changed or the problem focus had changed

to include anything new, the system would simply break. These systems lacked the

ability to learn, partly because of their limited data handling capabilities. The need

for intelligent systems that can learn has now been brought into sharper focus by

the availability of vast amounts of data and computational power that can be used

to enable systems to revise and update their Knowledge Bases and adapt to the

context of computing. The challenge now is how intelligent systems can be enabled

to rationally revise and update their Knowledge Bases using these vast amounts of

data, in an environment characterised by uncertainty, vagueness,and complexity. This

problem cannot only be viewed as a problem of the nature and source of knowledge

- an epistemology problem, but it is also partly an ontology problem. Hence, though

this thesis seeks to address an epistemology problem, it starts by arguing the need

for a knowledge representation that inherently handles uncertainty, ambiguity and

complexity, and supports revision and update of beliefs held in Knowledge Bases.

This thesis argues that even though probability and its related concepts, such as

possibility (Dubois & Prade, 2014), and plausibility (Collins & Michalski, 1989) are

not ontological, having a knowledge representation that can seamlessly integrate these

concepts into a representation of the ontological aspects of a domain, provide an

epistemological convenience that enables systems to automatically revise and update

their knowledge about the domain just as human beings do. Humans revise and

update their beliefs about the world through observation of the many uncertain,

incomplete, vague and complex aspects of the world.

Underlying the human agent’s ability to deal with uncertainty, inconsistencies,

incompleteness, and complexity is their ability to implicitly assign some degree of

belief to what they observe and the logical consequences of the observations. This

is done in the context of the beliefs about the world that the agent holds prior to

observations. There are a lot of frameworks to Belief Change that have been discussed

in literature over the years, but this thesis, in its bid to address the epistemology

problem in open and dynamic computing environments advocates for a framework
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based on probabilistic logic and a Bayesian approach to Belief Change. The choice of

a Bayesian approach is not withstanding all the arguments against it, which will be

duly discussed in later chapters.

1.2 Probabilistic Logic Representation

While Probabilistic models inherently deal with uncertainty, inconsistencies and

complexity in many real world domains, they mainly operate at propositional level.

This means that probabilistic models are not rich enough to capture relationships

between classes of objects. First Order Logic on the other hand is highly expressive

but struggles with handling uncertainty, inconsistencies and complexities. It has

become apparent that it is desirable that these logical systems should be integrated

to create a logical framework that is expressive enough for real world domains. Over

the past few years, several First Order Probabilistic Logic (FOPL) frameworks have

been proposed. A treatise of these frameworks will be given in Chapter 2. The

discussion in this chapter is limited to what is relevant here to position this thesis

in the maze of existing literature on Belief Change and probabilistic logic. The

position taken here is to view an FOPL as an extension of Probabilistic Graphical

Models with First Order Logic (FOL) semantics. Works that have emanated from

the field of Statistical Relational Learning (SRL) have over the years proposed a

few Probabilistic Logic frameworks such as Probabilistic Relational Models (PRMs)

(Getoor, 2000), Markov Logic Networks (MLN) (Richardson & Domingos, 2006),

Multi Entity Bayesian Networks (MEBN) (Laskey, 2008), etc. However, the efforts

in these works concentrated on the definition of representation semantics for the

frameworks and not much has been directed towards enabling Belief Change in such

representations.
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1.3 The Belief Change Problem

The Belief Change problem became of interest in Philosophical Logic and Artificial

Intelligence in the middle of the 1980s. The focus of the research has been mainly

to understand how an agent should change its beliefs as a result of getting new

information. The key principle underlying Belief Change is that the agent should

make minimal changes to its beliefs in the face of new information. That is, the

agent should not give up its beliefs unnecessarily unless there is compelling evidence

to do so. This is popularly known as the principle of minimal change or information

economy. An agent that adheres to this principle is therefore said to be rational

Belief Revision and Belief Update are two of the most studied models of belief

change. In principle both belief change types try to explain the source of incorrect

beliefs at any given time, but make different assumptions about the sources of in-

correct beliefs (Boutilier, 1998). If beliefs about the world are simply incomplete or

mistaken, steps must be taken to correct the misconception. A process of rationally

correcting such is what is known as Belief Revision and the AGM theory (Grdenfors

& Makinson, 1988) is the best-known characterisation of such in Qualitative Belief

Change. On the other hand, if beliefs about the world were once correct and complete,

but are now incorrect or incomplete owing to some changes in the world, steps must

be taken to update the beliefs to reflect the current state of the world. Katsuno and

Mendelzon (1991) proposed a general characterisation of Belief Update that provides

the constraints that must be satisfied to reflect the changes in the domain.

Both Belief Revision and Belief Update have received a lot of attention in liter-

ature. However, Knowledge Representation for Open and Dynamic Computing En-

vironments require mechanisms for handling both Belief Revision and Belief Update,

which have not received much attention in literature. Given the foregoing, this thesis

aims to address the Belief Change problem in open and dynamic computing environ-

ments that this research coined the Knowledge Lag problem. The knowledge lag is

defined as the gap that exists between the knowledge held in a given knowledge base
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and that which is the true state of affairs in the world. The knowledge lag emanates

from the fact that in an open and dynamic computing environment services, new con-

cepts, relationships, and practices can be added at will. As a result, if there are no

mechanisms to automatically update and/or revise knowledge bases, the gap between

the knowledge required to enable autonomous systems to perform satisfactorily and

the knowledge represented in knowledge bases will keep widening. However, as the

knowledge is being automatically evolved, a lot of ambiguities and uncertainties arise

due to the openness of the environment and the resultant knowledge bases are bound

to become more complex. Another sub-problem to the knowledge lag problem arises

as the gap between the knowledge captured in the knowledge bases and the knowledge

that is actually useable in the presence of increasing complexity keeps widening. This

thesis coined this problem the Knowledge Gap problem.

Over the years Probability Theory has emerged as a sound mechanism for han-

dling ambiguity, uncertainty and complexity in information systems. This has seen

techniques that have emanated from the field of Mathematical Statistics being used,

both as a mechanism for enabling computers to glean knowledge from huge amounts

of data and as a mechanism for enabling machines to handle uncertainty and com-

plexities in knowledge reasoning. Classical knowledge representation languages do

not handle uncertainty and deductive approaches to knowledge inference are known

to break down under increasing complexity. To address t his problem it is widely

accepted that a framework with a principled way of handling uncertainty will do.

Probabilistic Graphical Models (PGMs), such as Markov and Bayesian Networks,

have been studied as a means for representing knowledge in dynamic environments.

The major weakness with PGMs is that they represent knowledge at a propositional

level and hence like propositional logic they lack flexibility. This calls for a first order

version of PGMs, since First Order Logic is known to be flexible. In the quest for

producing knowledge representation languages that are First Order and can handle

uncertainty in a principled way, efforts have been both on enabling FOL to handle

uncertainty and enriching PGMs to handle First Order Logic. These efforts are result-
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ing in frameworks that are more or less the same. Learning algorithms from PGMs

are adapted to address the Belief Change problem in these languages. However, no

effort has explicitly been put into investigating whether these learning algorithms

conform to Belief Change principles and no framework has been proposed on formal-

ising the knowledge evolution problem in these knowledge representations. The work

presented in this thesis is an effort to provide an iterative Belief Change Model for

evolving Probabilistic Knowledge Representations(Knowledge based on PGMs) that

conforms to the principles of rational Belief Change.

The remainder of this introduction provides the thinking that produced this the-

sis, and the space this thesis fits in, in the existing philosophical views to logic,

epistemology, and Belief Change.

1.4 Research Questions

In addressing the Belief Change problem in Probabilistic Knowledge Representa-

tions for Open and Dynamic Computing environments, this research sought to answer

the following research question:

How can a Unified Belief Change Model for Probabilistic Knowledge Representa-

tions that caters for both Belief Revision and Belief Update be designed?

In order to comprehensively answer the fore-going research question, the following

sub-research questions were investigated:

1. How can Belief Change principles that have emanated from classical Belief

Change be used to model Belief Change in Probabilistic Knowledge Repre-

sentations?

2. Does a solution based on classical Belief Change principles result in more ra-

tional Belief Change (adheres to the principle of minimal change) compared to

classical Bayesian based Probabilistic Graphical Model Structure learning algo-

rithms for both Propositional Bayesian Networks and First Order Probabilistic

Knowledge Representations?
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3. Is Belief Update important for Belief Change in Probabilistic Knowledge Rep-

resentations?

1.5 Research Aim and Objectives

Given the fore-going discussion, this work aimed to develop an iterative Belief

Change model for evolving Knowledge Representations in open and dynamic com-

puting environments.

The specific objectives were to:

1. do a literature survey to establish the state of the art in knowledge represen-

tation and Belief Change in open and dynamic computing environments,

2. develop a Unified Belief Change model that caters for both Belief Update and

Belief Revision in Open and Dynamic computing environments,

3. argue the efficacy of the developed model from its theoretical underpinnings,

4. develop and implement a Belief Change operator based on the developed Uni-

fied Belief Change Model,

5. empirically evaluate the Belief Change Model using Benchmark datasets.

1.6 Positioning of this thesis

Some of the hotly debated issues in Belief Change are: how epistemic states should

be modelled, what the objects of belief should be, and what is the nature of the relata

of the degree of belief relation. It is common in Belief Change literature to assume

that a belief is a relation between an epistemic agent at a particular time to an object

of belief (Huber, 2009). The discourse in this section will start by giving this thesis

position on what is the nature of the relata of the degree of belief.

The degree of belief is a relation between an agent, the objects of belief and a

numerical value at a given time. The numerical value serves to give the strength with
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which the agent(s) believe the truthfulness of various propositions. The higher the

agent’s degree of belief in a particular proposition the higher the confidence in the

truth of the proposition. However, the precise meaning of a given degree of belief

depends on the underlying theory of degrees of belief. For instance, if probabilities

are used to capture the degrees of belief, a probability of 0.5 that a coin comes up

heads may in some theories indicate ignorance, and indicate that the coin is fair in

others. This thesis’ position on the degree of belief is based on the theory of subjective

probabilities. This theory, advocates that the degrees of belief should satisfy the laws

of probability. Although this position has no principled way of representing ignorance,

it suffices in solving the Belief Change problem that is addressed in this thesis.

This thesis takes propositions as the objects of belief. Thus, beliefs are defined

over propositions regardless of the language used to model the domain. We define

a proposition to be a set of possible worlds or truth conditions (Huber, 2009). This

thesis holds the position that in any world there exists a non-empty set of possibilities,

W , such that at any given point in time there is exactly one element of W that

corresponds to the actual world. However, this element is not observable and as

a result a belief state is kept as a subjective probability distribution over all the

possible worlds. However, this belief state does not sufficiently define the epistemic

state of the world. Since the Belief Change Model defined in this thesis is for dynamic

environments, the belief state needs to model the propensities of the belief dynamics

in the epistemic state. This thesis postulates that these propensities can be captured

through event plausibilities relative to the hypothesised state of the world. This is

one of this thesis’ major deviations from classical Belief Change theory. Although

this hypothesis has been studied in Qualitative Belief Change, this thesis is the first

work towards studying this phenomenon for Quantitative Belief Change and adapting

it to solve the Belief Change in Probabilistic Graphical Models based Knowledge

Representations.



9

1.7 Other Perspectives

The best developed account of the degrees of belief is the theory of degrees of

subjective probabilities. In this theory, Bayesian Conditionalisation (Greaves & Wal-

lace, 2006; P. M. Williams, 1980) is taken as the means for effecting Belief Change.

One of the key weaknesses of conditionalisation is that it is not feasible when the new

information is observed with uncertainty. This, coupled with the fact that subjective

probabilities have no principled way for representing ignorance, lead to proposals for

other measures for degrees of belief. This takes the discussion to Dempster-Shafer

(DS) function (Dempster, 1968; Shafer, 1976) and Possibility Theory (Dubois and

Prade, 1988). In DS function an agent’s beliefs about a proposition are divided into

three (3) mutually and jointly exclusive parts; (i) a part that favours A, (ii) a part

that favours W\A, and (iii) a part that neither favours A nor W\A (denoted by I).

P (A) quantifies the degree of belief in A and P (W\A) quantifies the degree of belief

in W\A. Thus, P (I) = 1 − P (W ) − P (W\A). This means subjective probabilities

can be seen as DS belief function without ignorance.

Possibility theory postulates that a proposition is at least as possible as all of

the possibilities it comprises and no more possible than the most possible possibility.

To a large extent it is comparable to probability theory. However unlike probability

theory, it uses a pair of dual set functions, possibility and necessity measures instead

of only one. Intuitively, possibility theory relates more to humans’ perception of the

degree of feasibility or ease of attainment (Zadeh, 1977) rather than how probable an

event is. On the other hand, probability is associated with likelihoods of events and

degrees of belief. It is on the backdrop of the fore-going that this thesis chose to use

probability over possibility as a measure of the degree of belief.

Other perspectives that compete with quantitative degrees of belief are qualita-

tive degrees of belief. Qualitative degrees of belief are often represented as ranking

functions (Spohn, 2012). Ranking functions partition the set of possible worlds into

sets of possibilities that are mutually exclusive and jointly exhaustive. The sets are
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then ordered with respect to their plausibilities. The first set contains the worlds that

are considered the most reasonable candidates for the actual worlds and this set is

said to be containing the possibilities that cannot be disbelieved.

1.8 Contributions of the Study

The hype about the Fourth Industrial Revolution is pushing researchers to begin to

ask some questions about how some of the day-to-day tasks which were traditionally

reserved for human beings can be done by machines. One such question that this

thesis is based upon is: Can machines do science? If they can, what are the necessary

and sufficient preconditions to make that possible? This thesis postulated two (2)

necessary preconditions: (i) there should be a knowledge representation that can

inherently handle uncertainty, and ambiguity inherent data, (ii) the scientific process

for knowledge discovery should adhere to the principle of minimal change.

In arguing the afore-mentioned notions, this thesis makes the following contribu-

tions towards extending frontiers of knowledge in the field of automatic evolution of

Knowledge Representations:

First, the thesis took a position that First Order Probabilistic Logic (FOPL) is

the ideal knowledge representation framework for enabling machines to automati-

cally refine their knowledge, and then formalised the logical bonds between Belief

Change in classical logic and Belief Change in FOPL that uses Bayesian Networks as

their underlying knowledge representation framework. The possible worlds view to

propositions provided a natural glue between the two worlds.

Second, the thesis developed a Unified Belief Change Model for automatic evo-

lution of probabilistic Knowledge representations that caters for Iterative Belief Re-

vision and Belief Update. Bayesian Conditionalisation was used to achieve Belief

Revision, and event semantics were used to achieve Belief Update. To ensure itera-

tive Belief Change the model defined an Epistemic Space that enabled it to return

an Epistemic State rather than a Belief Set or Belief Base as the output of a Belief
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Change process. The Unified Belief Change Operator for Bayesian Networks (UB-

COBaN) parenciteJembere2016 was developed based on the proposed Belief Change

model. Experimental results obtained for both Propositional Bayesian Networks and

Multi-Entity Bayesian Networks (an instance of FOPL used for experimentation in

this study) showed the importance of using the Epistemic States in the Belief Change

process in ensuring Minimal Change and faithfulness to the processes emitting the

data used in the Belief Change process.

1.9 Overview of the Chapters

This thesis is organised as follows: The next two chapters cover the foundational

concepts prevailing in this thesis. Chapter 2 presents the conceptual basis for knowl-

edge representation over which the proposed Belief Change model is defined. It starts

by establishing the need for Knowledge representation that inherently handles uncer-

tainty. Different First Order Probabilistic Knowledge representations are discussed.

Chapter 3 provides a treatise of the findings from a survey on the literature on Belief

Change in dynamic domains. This chapter sets the platform for the introduction of

Belief Change to First Order Probabilistic Knowledge representations. The chapter

also discusses other alternative views to Belief Change in dynamic domains.

Chapter 4 presents the Belief Change Model for First Order Probabilistic knowl-

edge representations that was developed in this study. The Chapter discusses the

logical bonds between classical logic and Bayesian Networks and then latches onto

this platform to define a Belief Change model for Bayesian Network-based knowledge

representations. Chapter 5 presents a Belief Change operator based on the model

defined in Chapter 4. The Operator takes advantage of the progress that has been

made in the literature on Bayesian Structure Learning. An illustration of how the

operator works using a toy example is also presented in Chapter 5.

Chapter 6 presents the empirical results on the evaluation of the proposed Belief

Change Model on Benchmark Propositional Bayesian Networks. The evaluation is
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meant to establish that the operator adheres to the principle of minimal change and is

agile enough to adapt to change if there is a change in the underlying process emitting

the data. The evaluation is benchmarked on the classical search and score algorithm

implemented in Banjo 1 Chapter 7 evaluates the proposed model in Multi-Entity

Bayesian Networks, a Bayesian Network based First Order Probabilistic Knowledge

Representation. The chapter discusses the implementation of the operator for MEBN

and evaluates its adherence to the principle of minimal change and agility to structure

changes when the underlying process emitting the data changes.

Chapter 8 summarises the thesis, draws some conclusions from the study con-

ducted in this thesis and gives some future research directions.

1https://users.cs.duke.edu/ amink/software/banjo/
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2. KNOWLEDGE REPRESENTATION IN OPEN AND

DYNAMIC ENVIRONMENTS

“Knowledge is an unending adventure at the

edge of uncertainty”

Jacob Bronowsk

2.1 Introduction

The pervasiveness of uncertainty, incompleteness and complexity in net-centric

computing environments is pushing the envelope on how the knowledge needed to

make such systems autonomous should be represented. Over the years a lot of work

has been directed at the development of languages for knowledge representation in

net-centric environments. This has resulted in the concept of ontologies being adopted

in Computer Science. In Computer Science, an ontology is defined as the conceptu-

alisation of a domain. Quite a lot of ontology languages have been defined over the

years, but the Web Ontology Language (OWL)(Antoniou & van Harmelen, 2004)

has emerged to be the most widely used. The underlying knowledge representation

used in OWL is Description Logics (DL), a decidable variant of First Order Logic

(FOL). First Order Logic is believed to be expressive enough to represent all forms of

knowledge needed by intelligent systems, but FOL logic is known to be very brittle

under uncertainty, ambiguity and increasing complexity. First Order logic is restricted

to representing facts that are absolutely true (Getoor, Friedman, et al., 2001). On

the other hand, probabilistic models are known to be a very robust mechanism for

handling uncertainty in decision making systems, but they inherently lack the expres-

siveness to handle First Order semantics.
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Over the past two decades probabilistic graphical models have become increasingly

popular, both as a language for representing knowledge about uncertain phenomena

and architecture for efficient inference algorithms. The turn of the twenty first century

saw a lot of efforts to combine FOL, and Probabilistic Graphical Models to take

advantage of the expressiveness of FOL and the inherent ability to handle uncertainty,

ambiguity, and complexity in Probabilistic Graphical Models. This has resulted in a

new field of Artificial Intelligence (AI) that has been dubbed Statistical Relational

Learning (SRL). The Knowledge representation techniques that have emanated from

the field of SRL either extends FOL with PGM semantics or extend PGMs with FOL

semantics.

This chapter discusses the conceptual basis for the knowledge representation that

serves as the platform over which Belief Change in Open and Dynamic computing

environments will be defined. The discussion in this chapter seeks to argue that

SRL-based knowledge representations are ideal for knowledge representation in Open

and Dynamic computing due to the fact they have the expressiveness of FOL and

can inherently handle uncertainty, ambiguity, and increasing complexity, which are

pervasive in any real-world domain. The argument will be presented from logical

and intuitive perspectives. This chapter will also endeavour to provide conceptual

clarity on the ontological aspects of probabilistic knowledge representations and their

separation from the epistemological aspects of the representations which are often

integrated with the representation. This may appear to be conceptual clumsiness

from a philosophy of science perspective, given that probabilities (degrees of belief) are

widely not taken as ontological (Nau, 2001; Rosinger, 2010). Probabilities are thought

to be just an epistemological convenience that science uses to revise and update

theories (beliefs about the world). However, the strength of First Order Probabilistic

Knowledge representation is drawn from such philosophical clumsiness, and it is in

the hope of providing clarity in such clumsiness that this chapter is presented. Several

SRL languages will be discussed with the aim of identifying the common ingredients

that can be used to give a general taxonomy of the SRL languages based on the
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underlying knowledge representation approach. The discussion will also explore how

these representations render themselves to handling knowledge in open and dynamic

environments and rational Belief Update and Belief Revision. This discussion will

start with a characterisation of Open and Dynamic Computing Environments and

then digress into discussing how knowledge should be represented to ensure rational

Belief Change in knowledge bases for Open and Dynamic Computing Environments.

2.2 Open and Dynamic Computing Environments

This section characterises what this thesis refers to as Open and Dynamic Com-

puting Environments (ODCE). An open computing environment is characterised as

an environment where documents, systems and services may appear, change or disap-

pear at any time and thus no assumption can be made about the content protocol, or

even availability or existence of entities in the environment (Palmisano et al., 2008).

Further to the above, open computing environments have no boundaries between le-

gitimate and illegal users of a system. Owing to the openness of the environment, the

notion of a common knowledge representation catering for the diverse range of entities

in the domain becomes untenable and thus necessitates the intelligent adaptation of

the knowledge representations to the status quo of the domain. Thus, the system also

becomes dynamic since the configuration of these systems is constantly changing.

A survey of related literature on Open and Dynamic Computing Environments

found the following challenges towards the goal of supporting knowledge-based decision-

making in Open and Dynamic computing environments (Jembere, Xulu, & Adigun,

2010): (i) Certainty of uncertain, ambiguous and inconsistent data, (ii)The dynamic

nature and complexity of the computing environment, (iii) Impracticality of manual

management of Belief Change in Knowledge Bases.
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2.2.1 Certainty of uncertain, ambiguous and inconsistent data

Much of the information in Open and Dynamic computing environments is un-

certain, ambiguous, often incorrect or only partially correct raising issues related to

trust and credibility of inferences drawn from such information (Laskey, 2008). Us-

ing deterministic ontologies to represent such knowledge leaves a lot to be desired.

Uncertainty representation and reasoning in such environments have the promise of

discounting the effect of these data imperfections and provide a proof theory over

knowledge bases in such environments.

2.2.2 The dynamic nature and complexity of the computing environment

Knowledge representations in Open and Dynamic environments need mechanisms

for incorporating new knowledge into the KBs. This is due to the following two

reasons: (i) owing to the complexity of the environment and incredibility of the

knowledge sources, the system’s beliefs about the world may simply be mistaken or

incomplete, (ii) the system’s beliefs about the environment might have been correct

at some point in time, but the belief may have become inaccurate due to changes in

the world, rendering certain facts true and falsifying some. (Laskey, 2008). Further

to this, in dynamic environments, the truthfulness of the system’s beliefs might be

situational, which will require situational knowledge representation and reasoning

(e.g. situational reasoning (Laskey, 2008), and Defaults (Lukasiewicz, 2002)

2.2.3 Impracticality of manual management of Belief Change in Knowl-

edge Bases

The complexity of the environment and the size of the Knowledge Bases in open

computing environments make manual update and revision of Knowledge Bases im-

possible owing to the following reasons: (i) Knowledge representation in general,

requires that the person effecting the changes to the knowledge base be both a knowl-
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edge engineer and a domain expert and very few people can be both; (ii) due to the

collaborative nature of the environment manual belief changes by different knowl-

edge engineers is likely to result in different KBs. This is because knowledge engi-

neers have different views on how a certain change should be implemented resulting

from differences in background knowledge, personal preferences, subjective opinions,

etc,(Flouris, Plexousakis, & Antoniou, 2006); (iii) Another source of problems for

manual revision and update of knowledge bases is the complexity of modern-day

Knowledge representations: These knowledge bases are usually developed by several

knowledge engineers or even teams comprising different expertise; (iv) in highly dy-

namic computing environments, ontology changes are so frequent that by the time

the engineers finish effecting the change the updated KB may still be lagging behind

the current state of knowledge in the domain.

The above discussed characterisation of Open and Dynamic computing environ-

ments calls for a new thinking on how knowledge representation for such environments

should be done. It is in view of the above discussion that this thesis argues for the

following desiderata for knowledge representation in open and dynamic computing

environments:

i. Knowledge Representation should be able to represent knowledge about entities

that are related to each other, and reason about the knowledge in the presence

of uncertainty, incompleteness, ambiguity and complexity.

ii. The knowledge representation framework should support situational reasoning.This

is meant to counter the effect of complexity of the knowledge representation, and

iii. Knowledge representations should have the capability of being easily integrated

with a rational and objective operator for automatic iterative Belief Change.

The discussion on the above will be revisited later when choosing a Knowledge

representation framework for this study.
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2.3 Inconsistencies, Uncertainty, Ambiguity and Knowledge Representa-

tions

Uncertainty, ambiguity, inconsistency, and complexity, rather than being excep-

tions, are typical default characteristics of Open and Dynamic computing environ-

ments. Classical knowledge representation approaches do not cater to these charac-

teristics. This calls for the development of mechanisms that enable next generation

computing environments to account for these characteristics in representing and rea-

soning upon the knowledge in their Knowledge Bases.

In classical logic inconsistencies are taken as bugs or defects in the knowledge

base. Traditional ways of dealing with inconsistencies involve having to remove some

information from the knowledge base. At times, approximate reasoning is used but

it often forfeits correctness. Probabilistic approaches to knowledge representation

addresses the consistency problem by relaxing the proposition in the knowledge base

if the world violates any of the propositions. That is, violated propositions are only

made less likely but not impossible.

Probability has emerged as the natural candidate to represent uncertain phenom-

ena. Owing to its promises towards this goal, a lot of research efforts have been

directed towards introduction of probabilities in knowledge representations though

hindered by scepticism on the ontological aspect of probability (Roelofs, 1935) and

tractability of inferences and feasibility of representation (da Costa et al., 2005).

Progress has been made on this frontier, but a philosophical discussion on the relata

between logic and probability is still a hotly debated topic.

2.4 Logic and Probability

Although the formal behavior and the calculus of probability is for the most part

uncontroversial, their interpretation has largely been controversial. Probabilities can

be interpreted as either (i) statistical statements or (ii) degrees of belief. As pro-

posed in (Roelofs, 1935), this thesis uses the term Statistical Probability to refer to
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the former and Propositional Probability to refer to the latter. These two notions of

probability are quite distinct. Statistical probabilities are defined over sets of individ-

uals and do not relate to particular individuals. They are a reflection of the statistical

regularities in the world. An example would be, 80% of the papers referenced by pa-

pers on reinforcement learning are in the category of reinforcement learning. This

is a statistical assertion about the proportion of papers that are cited by papers on

reinforcement Learning. Propositional probabilities, on the other hand, are attached

to propositions about particular individuals. An example would be: the probability

that a paper with 80% of its citation from reinforcement Learning is on Reinforcement

Learning is 60%. This is an assertion about the degree of belief, and its truthfulness

determined by the subjective state of the agent making the statement. There is no

connection between an agent’s subjective belief and the objective state of the world.

From a philosophical point of view, the difference between these concepts should

be amplified to provide clarity in order to avoid theoretical clumsiness. This has

over the years led proponents of probability in AI choosing to side-step the empirical

foundation of propositional probabilities. The belief is the only constraint that should

be applied to subjective probabilities is obeying the axioms of probability. This

view ignores the issue of the source of these probabilities and how they relate to

the objective state of the world which pertains to empirical experience. This thesis

submits that for rational Belief Change in Knowledge Representations in Open and

Dynamic Computing environments, there is a need for integrating the interpretations

of probability into forming a model for rational Belief Change in Open and Dynamic

computing environments.

In the literature on philosophy, there is already a well developed formalism for

integrating logic and probability. The basic claim of this formalism is that for any

two propositions A and B there is an objective, logical relation of partial entailment

between A and B measured by a unique conditional probability P (A|B). The key

known proponents of this formalism are Canarp (Carnap, 1950) and Keynes (Keynes,

1921), but the position is referred to as the Carnapean position in philosophy lit-
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erature (Bradley, 2018). This position as presented by carnap uses some version of

the principle of indifference to logically infer the conditional probability values. This

approach to determining probabilities is rejected in most contemporary literature on

First Order Probabilistic logic. Contemporary approaches to Statistical Relational

Learning advocate that the probabilities should be defined by users or they should

come from data. This thesis submits that these probabilities should come from data.

Although contemporary techniques for integrating probability and logic reject Car-

nap’s approach to determining probabilities, it turned out that his approach of using

possible worlds semantics to interpret both logic and probability provides the glue

that relates logic and probability.

In classical logic, to interpret terms and formulae of a FOL language L it is nec-

cessry to consider Lstructures, which are also known as possible worlds. For instance

flies(tweety) is true in a given possible world,W , if the individual denoted by tweety

belongs to a set of things that fly. Thus, the set of things that fly defines the possible

worlds for things that fly. Given such semantics, the probability that an individual

represented by the constant tweety flies is defined as P(flies(tweety)). In the objective

world its either the individual tweety flies or it does not. However, from the empericist

position, we can use counting processes on the possible worlds to get some degree of

belief on whether the individual,tweety, flies or not, by counting the number of worlds

where tweety flies. From a statistical point of view, the probability of an individual,

tweety1 of type tweety, can be estimated by counting the number of possible worlds

in which individuals of type tweety have been observed flying.

Rational Belief Change in First Order Probabilistic Models is the focus of this

thesis. However, in order to come up with some algorithms for such, it is important

for one to understand how beliefs are represented in the Probabilistic Logic fomalisms.
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2.5 Why First Order Probabilistic Logic

Logic and probability theory are two of the main tools in the formal study of

reasoning (Demey, Kooi, & Sack, 2016). Logic is a schema for defining languages for

describing and reasoning about entities in a domain. It offers a qualitative (struc-

tural) perspective on representation of the knowledge and inferences concerned with

absolutely certain truths and inferences about the domain. Thus, classical logic has

no apparatus to handle uncertainty and inconsistencies that are pervasive in real

world domains. The most widely used logical system is First Order Logic. First-

order logic is applied by defining a set of axioms, or sentences that make assertions

about a domain. The axioms, together with the set of logical consequences of the ax-

ioms, comprise a theory of the domain. Until referents for the symbols are specified,

a theory is a syntactic structure devoid of meaning. An interpretation for a theory

specifies a definition of each constant, predicate, and function symbol in terms of the

domain. Each constant symbol denotes a specific entity, each predicate denotes a

set containing the entities for which the predicate holds, and each function symbol

denotes a function defined on the domain. The logical consequences of a set of ax-

ioms consists of the sentences that are true in all interpretations, also called the valid

sentences.

First Order Logic (FOL) is known to have the ability to represent entities of dif-

ferent types interacting with each other in varied ways. A first-order theory enforces

truth-values for the valid sentences and their negations, but offers no means of eval-

uating the plausibility of other sentences that may not necessarily be true but are

probably true. Plausible reasoning is fundamental to intelligence owing to the fact

that uncertainty is more of a rule than an exception in the real world. FOL lacks a

theoretically principled way of reasoning under uncertainty.

Probability theory naturally has the apparatus to deal with uncertainty in real

world domains. As a result graphical probability models have become popular as

a parsimonious language for representing knowledge about uncertain phenomena, a
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formalism for representing probabilistic knowledge in a logically coherent manner,

and an architecture to support efficient algorithms for inference, search, optimisa-

tion, and learning. A graphical probability model expresses a probability distribution

over a collection of related hypotheses as a graph and a collection of local probability

distributions. The graph encodes dependencies among the hypotheses. The local

probability distributions specify numerical probability information. Together, the

graph and the local distributions specify a joint distribution that respects the condi-

tional independence assertions encoded in the graph, and has marginal distributions

consistent with the local distributions.

Probabilistic Graphical Models by themselves are probabilistic extensions of propo-

sitional logic. As a result, like propositional logic, they are limited in that they cannot

represent objects and relations between them, and that is certainly an important part

of rationality. They are insufficiently expressive to reason about varying numbers of

related entities of different types, where the numbers, types, and relationships among

entities usually cannot be specified in advance and may have uncertainty in their own

definitions. This makes probability theory an incomplete theory of rationality. This

lack of expressiveness limits application of Probability Graphical Models in represent-

ing knowledge about real world domains. On the other hand, although First Order

Logic is very expressive, it in itself lacks ability to reason about evidence. Proba-

bility in the form of Bayesianism is a theory of evidence. The big question is: Can

they be combined to get a complete theory of rationality? Against this background a

number of languages that integrate Bayesian Networks with First Order Logic have

been proposed. Although there are Philosophical arguments against integrating the

two, practical applications have shown that integrating logic and probability works

for many real word applications. This has prompted a lot of studies directed towards

combining First Order Logic and Probabilistic Graphical Models.
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2.6 First Order Probabilistic Logic (FOPL)

First Order Probabilistic Logic solutions can be categorised along two (2) di-

mensions. The first dimension is based on the nature of the underlying formalism

for knowledge representation, which could be either rule-based or frame-based for-

malisms. Rule-based formalisms emanated from efforts extending First Order Logic

with probabilities. Hence, these tend to add probabilities as weights to FOL state-

ments. Syntactically, rule-based models are indistinguishable from FOL, except that

each formula will have a weight attached to it. Frame-based solutions emanated from

efforts aimed at extending Probabilistic Graphical Models to handle FOL. Hence, they

tend to focus of the objects and the relationships between them. They use Proba-

bilistic Graphical Models to capture the dependence structure between attributes of

the objects and the relationships between them. The second dimension along which

FOPLs can be categorised is the nature of the underlying graphical structure used

to capture the probabilistic aspect of the logic. The graphical models can either

be directed or undirected. Directed models use Bayesian Networks as their under-

lying knowledge representation structure, whereas undireceted models use Markov

Networks. Both Bayesian networks and Markov networks model the joint probability

among random variables by decomposition. The goal is to simplify the joint proba-

bility distribution, as well as preserve interesting dependencies that can then be used

to model the statistical regularities of the domain.

An analysis of existing solution along these dimensions produce the following

categories of FOPL solutions

i. Rule-based Undirected Models

ii. Frame-based Undirected Models

iii. Rule-based Directed Models

iv. Frame-based Directed models
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2.7 Undirected First Order Probabilistic Logic

The Undirected models are based on the Markov networks. These models model

symmetric, non-causal interaction between attributes of an object and/or relation-

ships between objects. To create the background needed to understand these models

the next section will discuss the basic concepts of Markov Networks.

2.7.1 Markov Networks

A Markov network is a model for the joint distribution of a set of variables X =

(X1, X2, ..., Xn) ∈ X (Pearl, 2009). It is composed of an undirected graph G and a set

of potential functions φk. The graph has a node for each variable, and the model has

a potential function for each clique in the graph. A clique is a subgraph where every

two vertices are connected to each other. Cliques enable the probability distribution

to factorise into a probability distribution that is easier to parameterise. A potential

function is a non-negative real-valued function of the state of the corresponding clique.

The joint distribution represented by a Markov network is given by

P (X = x) =
1

Z

∏
k

φk(x{k}) (2.1)

where x{k} is the state of the kth clique. Z, known as the partition function, is given

by Z =
∑

x∈X
∏

k φk(xk). Markov networks are often conveniently represented as

log-linear models, with each clique potential replaced by an exponentiated weighted

sum of features of the state, leading to

P (X = x) =
1

Z
exp(

∑
j

wjfj(x))) (2.2)

A feature may be any real-valued function of the state. In the most direct transla-

tion from the potential-function form (Equation 2.1), there is one feature correspond-

ing to each possible state x{k} of each clique, with its weight being logφk(x{k}).This

representation is exponential in the size of the cliques. However, we are free to specify
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a much smaller number of features (e.g., logical functions of the state of the clique),

allowing for a more compact representation than the potential-function form, partic-

ularly when large cliques are present.

Undirected Logic models make use of the concept of Markov Networks, hence no

formula has its own probability explicitly stated. The probability of each possible

world is defined in terms of its features, where each feature has an associated real

value parameter.

Undirected logic models generally have one major advantage over directed models.

Undirected models avoid the the difficulties of defining a coherent non-cyclical gener-

ative models for graph structures as required in directed graphical models. However,

this comes at the price of more expensive learning operations.

2.7.2 Rule-Based Undirected Models

Rule-based Undirected Models extend FOL statement with Markov Networks.

Markov Logic Networks (MLN)(Richardson & Domingos, 2006) are the only known

example of such models. Owing to this fact the discussion in this section is going to

focus on Markov Logic Networks. MLNs define a probability distribution over as set

of worlds as follows (Richardson & Domingos, 2006):

An MLN is a set of pairs (Fi, wi), where Fi is a formula in first-order logic and

wi is a real number. Together with a finite set of constants C = {c1, c2, c3, ..., c|C|},

defines a Markov Network ML,C as follows:

1 ML,C contains one binary node for each possible grounding of each predicate

appearing in L. The value of the node is 1 if the ground atom is true, and 0

otherwise

2 ML,C contains one feature for each possible grounding for each formula Fi in

L. The value of this feature is 1 if the ground formula is true and 0 otherwise.

The weight of the feature is the wi associated with Fi in L.
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Learning structure in MLNs, is done through Inductive Logic Programming (ILP)(Muggleton,

1991). In ILP, hypotheses are constructed through refinement operators that add and

remove literals from clauses. Learning is done from data in relational databases by

making the closed world assumption. Thus, if a ground atom is not in the database,

it is assumed false. Belief Change in such representation will have to make use of

inductive logic programming. Nothing much has been done in literature on how ILP

relates to rational Belief Change. One effort that investigates this is the work by Pag-

nucco and Rajatratnam (2005) which investigated Inverse resolution as Belief Change

operator.

2.7.3 Frame-based Undirected Models

Frame-based Undirected Models extend Markov Networks with FOL semantics.

Instead of defining the FOL statements for a given domain, these models endeavour

to come up with a joint probability distribution for the entire collection of related

entities. The resulting model is Markov Network over a relational data set. The goal

is to use the Markov Network to model the relational structure of the domain, and

the same can easily model complex patterns over related entities. One example of

a frame-based directed model is Relational Markov Networks(RMN) (Taskar et al.,

2007).

An RMN specifies a conditional probability distribution over all of the labels of

all entities in an instantiation given a relational structure and the content attributes

(Taskar et al., 2007). Roughly speaking an RMN specifies the cliques and potential

functions between attributes of related entities at template level. A single RMN

model provides a coherent distribution for any collection of instances from a given

relational schema.

Formally, a Relational Markov Network is defined as follows:

A Relational Markov Network M = (C,Φ) specifies a set of clique templates C and

corresponding potential Φ = {φC} to define a conditional distribution:
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P (I.x|I.y, I.r) =
1

Z(I.x, I.r)

∏
C∈C

∏
c∈C(I)

φC(I.xc, I.yc) (2.3)

where Z(I.x, I.r) is a normalising partition function, I.x is the set of the parent

variable from a given entity and I.r is the set of parent variables from entities related

to a given entity.

Z(I.x, I.r) is given by

Z(I.x, I.r) =
∑
I.y

∏
C∈C

∏
c∈C(I)

φC(I.xc, I.yc) (2.4)

To the best of the researcher’s knowledge, RMN is the only rule-based undirected

model found in literature. There was no any work found on structure learning in

RMN. The learning discussed in (Taskar et al., 2007) only covered parameter learning

assuming the clique templates are given.

One of the major weaknesses of RMN is that it does not provide a language

for defining features. As a result RMNs require a feature for every possible state

of a clique, making them exponential in clique size and limiting the complexity of

dependencies they can model. Since there is no any defined method for revising

the structure of RMNs, this framework was not considered for testing the solution

proposed in this study for rational Belief Change in FOPL.

2.8 Directed First Order Probabilistic Logic

Directed models use Bayesian Networks as the basis for knowledge representation.

Bayesian Networks provide a means of parsimoniously expressing joint probability

distributions over many interrelated hypotheses.

2.8.1 Bayesian Networks

A Bayesian Network consists of 2 major components; the Structure and set of

local probability distributions. The structure of a Bayesian network is a set of nodes
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representing random variables and directed edges between them for a Directed Acyclic

Graph (DAG). The DAG represents direct qualitative dependence relationships be-

tween variables. A random variable denotes an attribute, a feature or a predicate

whose value we may not be certain of. Each random variable has a set of mutually

exclusive and collectively exhaustive possible values. That is, exactly one of the pos-

sible values is or will be the actual value, and we are uncertain about which one it

is. The local distributions represent quantitative information about the strength of

those dependencies. Together the graph and the local distributions represent a joint

distribution over the random variables denoted by the nodes of the DAG.

Formally, a Bayesian Network is defined by:

1. a directed acyclic graph (DAG), G = (V,E), where V is the set of vertices

representing n discrete random variables X = {X1, X2, X3, ..., Xn}, and E is

the set of directed edges corresponding to conditional dependence relationships

among these variables.

2. A set of local probability distributions: Θ = {Θ1,Θ2,Θ3, ...,Θn}, where each

Θi = P (Xi|Pa(Xi)) denotes the conditional probability distribution (CPD) of

each node Xi given its parents in G denoted by Pa(Xi).

Assuming conditional independence, the joint probability distribution for a Bayesian

Network factorises in a product of the local distribution as shown in Equation (2.5)

P (X1, X2, X3, ..., Xn) =
n∏
i=1

P (Xi|Pa(Xi)) (2.5)

Equation (2.5) is called the chain rule for Bayesian Networks. It provides a method

for determining the probability of any complete assignment to the set of random

variables.

First Order Probabilistic logic based on Bayesian Networks does not allow cyclic

relationships between variables, which often causes problem when dealing with do-

mains that have bidirectional relationships, which are not necessarily causal.
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2.8.2 Rule-based Directed Models

Rule-based Directed Models extend FOL logic with Bayesian Networks seman-

tics. Examples of such languages include; Stochastic Logic Programs (SLP) (Muggle-

ton, 1996),Bayesian Logic Programs (Kersting & Raedt, 2001), Relational Bayesian

Networks(RBN) (Jaeger, 1997), Logical Bayesian Networks(LBN) (Fierens et al.,

2005),etc. These solutions generally assign some probabilistic weights to conditional

FOL statements.

Consider, for a example, the relationship between papers, papers they cite, and

their categories, adopted from the CORA dataset. Figure (2.1) shows the proposi-

tional clauses encoding the relationship between three (3) papers, P , P1, P2.

Now, consider a Bayesian representation of the relationship between the papers

1. class label(P2)

2. cites(P1, P2))

3. cites(P, P1)

4. class label(P1)← class label(P2), cites(P1, P2)

5. class label(P )← class label(P1), cites(P, P1)

Figure 2.1.: Propositional Logic clauses for a domain with 3 papers, P , P1, and P2

shown in Figure (2.2). The Figure shows a repeated graphical sub-structure between

the random variables; class label(.), and cites(.) highlighted by the unshaded ovals

in Figure (2.2). The graphical structures and their associated conditional dependen-

cies for the two(2) sub-structures are controlled by the same intensional regularities,

but these regularities are not and can not be captured at propositional level. The

approach rule-based models take is to upgrade these propositional clauses encod-

ing the structure of a Bayesian Network to First Order clauses. Such a represen-

tation will, after introducing variables X and Y to stand in as place holders for

the papers, result in the following FOL clauses; class label(Y ), cites(X, Y )), and

class label(X)← class label(Y ), cites(X, Y ) shown in Figure (2.3).
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Figure 2.2.: Graphical View of the Propositional Logic clauses.

1. class label(Y )

2. cites(X,Y ))

3. class label(X)← class label(Y ), cites(X,Y )

Figure 2.3.: First Order Logic clauses

In Bayesian Logic Programs (BLPs), the logical clause A ← B1, B2, ..., Bn is

expressed by what the authors called a Bayesian clause as follows:

A Bayesian Clause of the form A|B1, B2, ..., Bn is an expression defined from a

logical clause A ← B1, B2, ..., Bn. n ≥ 0 and when n = 0 a Bayesian clause is

called a Bayesian fact and is simply expressed as A. Figure (2.4) shows an example

Conditional Probability table for a BLP.

2.8.3 Frame-based Directed Models

Most FOPL frameworks are in this category. Examples include; Probabilistic

Relational Models (PRM) (Getoor, Friedman, et al., 2001), Probabilistic Entity Re-

lation Models (Heckerman, Meek, & Koller, 2004), Multi Entity Bayesian Networks
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class label(Y ) cites(X,Y ) P (class label(X)|cites(X,Y ))

Reinforcement learning 1 (0.9, 0.02, 0.03, 0.025, 0.025)

Theory 1 (0.02, 0.8, 0.03, 0.025, 0.025)

... ... ...

Theory 0 (0.2, 0.2, 0.2, 0.2, 0.2)

... ... ...

Figure 2.4.: BLP Conditinal Probability Table

(MEBN)(Laskey, 2008), and Bayesian Logic (BLOG) (Milch et al., 2005). These

models extend Bayesian Networks with concepts of objects, their properties and re-

lationships between them. In a way, Frame-based Directed models are to Bayesian

Networks what FOL is to propositional logic. Generally, the models define coherent

formal semantics in terms of a probability distribution over sets of FOL interpreta-

tions. Given a set of ground objects, the model specifies a probability distribution

over sets of interpretations involving these objects.

Frame-based Directed models have three(3) major components, and these are:

the logical description of the domain, a probabilistic graphical model template, and

a set of conditional probability distributions that corresponds to the graphical prob-

abilistic model template. The logical description captures the FOL aspects of the

representation. The probabilistic graphical model template describes the probabilis-

tic dependencies in the domain, and the conditional probability distribution shows

the statistical regularities for different instantiations of the model.

Among the afore-mentioned Frame-based Directed Models, MEBN has the advan-

tage of being able to express arbitrary quantified FOL sentences and support recursion

(da Costa, 2005). It also, unlike other frameworks, does not use object types as the

unit of expression. In MEBN, distributions are specified over conceptually meaningful

clusters of related hypothesis. This unit of representation facilitates flexible modular

specification of the knowledge representation, that is not confined to the object types

(Laskey, 2008).
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This study uses the MEBN framework as a platform for the Proof of concept,

hence this framework was used in this section to illustrate Frame-based Directed

Models. A more detailed discussion of MEBN will be given in Chapter 7. Figure 2.5

shows an example graphical representation of MEBN Theory for the CORA dataset 1.

Figure 2.6 shows the FOL statement extracted from the MEBN Theory in Figure 2.5.

Figure 2.7 shows an excerpt from the CPT of the class label variable of the MEBN

theory in Figure 2.5

Figure 2.5.: MEBN Theory generated from the CORA dataset.

1. isA(PAPER, paper)

2. isA(PAPER1, paper)

3. ¬(PAPER = PAPER1)

4. isA(WORD CITED,word cited)

5. content(WORD CITED,PAPER)

6. ∀PAPER, ∃PAPER1 : (class label(PAPER1) ∧ cites(PAPER,PAPER1) � class label(PAPER))

Figure 2.6.: FOL statements extracted from the MEBN Theory in Figure 2.5

1https://relational.fit.cvut.cz/dataset/CORA
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Figure 2.7.: An Except from the CPT for the variable class label(PAPER).

Owing to the fact that MEBN is more expressive, in terms of being able to rep-

resent quantified FOL and handling recursion, compared to the other Frame-based

Directed Models, this study uses MEBN as the Proof of Concept platform. It is, how-

ever, important to note that Rule-based Undirected Models, such as Markov Logic

Networks, are more expressive than Frame-based directed model. In fact, Markov

Logic Networks are believed to generalise all First Order Probabilistic Logic models.

Ideally it would have been prudent to evaluate the Belief Change Model proposed

in this study with such expressive representation, but owing to the complexity of

the structure learning problem for such models, this research opted to evaluate the

proposed solution with frameworks with well studied structure learning algorithms.

2.9 Conclusions

This chapter has established the need for a Knowledge Representation that in-

herently handles support for uncertainty. The discussion, started off with a charac-

terisation of Open and Dynamic Computing Environments. Based on the literature
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surveyed, a desiderata for knowledge representation in Open and Dynamic Computing

environments was established: (i) The knowledge representation should be expressive

enough to represent knowledge about entities that are related to each other and to

reason about the knowledge in the presence of uncertainty and increasing complex-

ity; (ii) The KR should be capable of being easily integrated with a rational and

objective operator for Iterated Belief Change; and (iii) The KR framework should

support situational reasoning. Our investigation showed that frameworks that have

emanated from the field of Statistical Relational Learning meet this desiderata. The

only limitation they have is that there has not been any effort in making sure that

the learning algorithms adhere to the principles of rational Belief Change.

Rational Belief Change is a well studied subject in classical logic. However clas-

sical logic has well defined boundaries between the ontological part of knowledge

representations and the epistemological aspect of the knowledge. In Probabilistic

Knowledge representation, probability is taken as part of the knowledge representa-

tion. However, in philosophy, probability is not ontological. It is thought of as an

epistemological convenience that enables knowledge acquisition in the presence of un-

certainty. This philosophical clumsiness in FOPL enables them to inherently handle

Belief Change. This study will, in Chapter 4, take advantage of this philosophical

clumsiness to define a Belief Change Model for First Order Probabilistic Logic.

A literature survey of existing work on Statistical Relational Learning showed that

there are two major efforts that are converging into the field of First Order Proba-

bilistic Logic for knowledge representation in environments dogged by uncertainty.

One effort seeks to extend First Order Logic with probability and the second seeks to

extend probabilistic graphical models with First Order Logic. Markov Networks and

Bayesian Networks are often used to encode the conditional independence assump-

tion to make inferences in such models intractable. FOPL frameworks that are based

on Markov Networks are said to be undirected models and those based on Bayesian

Networks are said to be directed. Although there are fewer frameworks based on undi-

rected models, undirected models are generally believed to be more expressive than
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their directed counterparts. Markov Logic Networks are believed to be rich enough

to be applied in all cases where directed models can be used (Richardson & Domin-

gos, 2006). However, owing to the the complexity of structure learning in undirected

graphical models and lack of tried and tested structure learning algorithms, this thesis

developed a Belief Change operator for Directed Frame-based models. The proposed

Belief Change meta-model is however generic enough to cater for Belief Change in the

structure of any FOPL framework. Although the meta-model is a Bayesian model, it

is not prescriptive on the nature of the underlying frame-based probabilistic logic it

can be applied to.

Belief Change for Rule-based FOPLs is outside the scope of this work. Rule-based

FOPL frameworks are usually weighted FOL statements, and probabilistic graphical

models are only considered when the logic has been instantiated in order to enable

inferences. Learning of the FOL statements is usually done through Inductive Logic

Programming (ILP) (Muggleton, 1991). Nothing much have been done in literature

on how ILP relates to rational Belief Change. One effort that investigates this is the

work by Pagnucco and Rajatratnam (2005) which investigated Inverse resolution as

Belief Change operator.

In view of the foregoing, this thesis concentrated on Belief Change on Frame

based FOPL frameworks. The Multi-Entity Bayesian Networks (MEBN) framework

was chosen for our Proof of concept. The developed operator can be used for any

Directed Frame-based FOPL. The next chapter, Chapter 3, will discuss Belief Change

in classical logic with the aim of establishing some knowledge nuggets that will be

used in developing a Belief Change model directed First Order Probabilistic logic.
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3. BELIEF CHANGE IN DYNAMIC DOMAINS

“Anything that gives us new knowledge gives us

an opportunity to be more rational.”

Herbert Simon.

3.1 Introduction

Underlying the Belief Change problem is the quest for rationality in the process

of changing beliefs about a given world in response to new information. This chapter

is going to discuss the view of rationality that all arguments, with respect to Belief

Change, to be presented in this thesis are based on. Although the discussion starts

off with the view of rationality from a classical qualitative Belief Change perspective,

the discussion will later digress to discussing rational Belief Change in First Order

Probabilistic Knowledge representation. The perspective on Belief Change in FOPL

presented in this chapter builds on the techniques that have come out of the research

in classical Belief Change. Belief Change as a field of Artificial intelligence seeks

to understand how software agents should rationally change their beliefs when they

perceive new information or some information inconsistent with their beliefs. This

assumes that the agents will have some prior set of beliefs that they need to change

in response to some observations. The goal of the agents is therefore synonymous

with the goal that human beings seek to achieve when they do science. From a

philosophy of science standpoint, a product of science is a theory about the laws of

nature that matches the results of experiments and observations. So, these three

elements: theories, laws of nature, and experiments or observations, are not only

complementary to science, but they are also the foundations upon which science is

built. Science presumes that there are some premises that do not need to be verified
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or checked to start with. That is, there should be some beliefs about the world that

should be accepted before any scientific enquiry. One of these fundamental beliefs is

the belief in the existence of objective reality that is perceived more or less the same

by everyone. This assumption is the fulcrum of science and knowledge, and science

often assumes the objectivity of observed data.

From observing how human beings do science, it can be concluded that science has

a logical framework, albeit that the framework reaches beyond deductive logic into

the murkier realms of inductive reasoning and statistical inference. These realms are

dogged by uncertainty and ambiguities, which human beings have over the years de-

veloped some techniques for handling. In AI, Belief Change has only been considered

from a classical logic perspective. This makes it impossible for machines to use Belief

Change in its current state to do science. This thesis argues that what machines lack

to be able do science are structures to support a Logical Framework for science. As

presented in Chapter 2, FOPL knowledge representation provides knowledge repre-

sentation that enables such a logical framework. Belief Change in classical logic has

a potential of providing rational operators for refining theories based on observation,

but classical logic is too brittle to enable automatic evolution of knowledge bases.

This Chapter presents an argument that techniques that have emanated from classi-

cal Belief Change can be extended to create a Logical Framework that can be used

by machines to do science.

3.2 Belief Change: Preliminaries

The debate on Belief Change has traditionally been dominated by two types of

Belief Change which have been coined Belief Revision and Belief Update (Friedman

& Halpern, 1994). Both Belief Revision and Update attempt to capture the intuition

that, given an observation of a new belief, minimal changes should be made to the

’Belief Set’ (a set of beliefs currently held by an agent) in order to accommodate

the new belief. The difference between them is that Belief Revision attempts to
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decide what beliefs should be discarded to accommodate a new belief, while Belief

Update attempts to decide which changes occurred in the world that led to the new

observation. Before discussing these types of Belief Change the discussion will start

with a discussion of the basic principles underlying Belief Change.

3.2.1 Representation of beliefs

Given a sentence in a given language, L, a rational agent should display three

doxastical attitudes towards the sentence (Chhogyal, 2015):

1. a belief : is a sentence that the agent accepts as true

2. a disbelief : a sentence that the agent accepts as false

3. a non-belief : a sentence that the agent nether believes or disbelieves. That is

the agent is agnostic of the sentence.

There are two major views to representation of beliefs:(i) the Belief Sets view and

(ii) the Possible Worlds view.

In the Belief Sets view, the sentences of a formal language are taken as the objects

of belief. An agent’s beliefs are represented by a Belief Set K, which consists of

sentences from some language L. Negation of any of the sentences in the Belief Set

gives a disbelief. All sentences that are not in the Belief Set, which are not negations

of the sentences in the Belief Set are non-beliefs.

In the Possible Worlds view, propositions(sets of possible worlds) are the objects

of belief. A Possible World is a candidate interpretation of a given logical sentence.

The Possible Worlds view views the world to be in one of the many possible states

at any given time. A state is one particular configuration of the different ‘variables‘

in the domain. Each state is called a possible world. The Belief State of an agent is

a set of all possible worlds that the agent believes one of them is the real world. To

distinguish between the Belief Set K from the Belief State, [K] is used to denote the

Belief State. If a sentence α is true in all worlds in [K], then it is said the sentence α
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is a belief in [K]. For any sentence α, the set of all possible worlds in which α is true

is denoted by [α]. The terms α-world and K-world are used to respectively refer to

a world where α is true, and a world where all the sentences in the Belief Set K are

true.

In classical logic, where Belief Sets are used to model beliefs, an agent is uncertain

about the truthfulness of a sentence when it is a non-belief relative to the agent. The

bigger the set of non-beliefs is, the more uncertain the agent is about the truthfulness

of any sentence. Probabilistic representations of beliefs use the Possible Worlds view

which is based on the concept of Belief States. When Belief States are used, an agent

is uncertain about the possible worlds in the set of worlds that satisfy the Belief Set.

The bigger the set of possible worlds, the more uncertain the agent is. If the set of

K-worlds has only one world, then the agent has no uncertainty about the world.

3.2.2 Probability as a Degree of Belief

In both the Belief Sets and the Possible Worlds representations, the objects of

belief that the agent is uncertain about are lumped together into a single group and

there is no way of comparing the relative degrees of belief on the objects within a

group.

If probability is to be used as measure of degree of belief in the Belief Sets repre-

sentation, an epistemic agent assigns a degree of belief of 1 to a sentence it is certain

that it is true. That is, the degree of belief assigned by an agent to what it is certain

of is 1. Owing to the dual nature of beliefs, the agent will assign a degree of belief

of 0 to all disbeliefs. The relative degrees of belief on the non-beliefs will be greater

than 0 but less than 1.

In the Belief Sets view to representation of beliefs, probability can be used as a

mechanism for comparing the relative degrees of belief of logical sentences as follows:

Assume that given a sentence α from a logical language L, an agent assigns a numer-

ical value to it to give relative degree of belief in its truthfulness. Let this assignment
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be represented by a function, P , that take a sentence from L. Using the Kolmogorov

(1956) laws of probability, P is a probability function if,

1. 0 ≤ P (α) ≤ 1

2. P (>) = 1

3. for two sentences α and β, if α and β are logically disjoint, P (α∨β) = P (α) +

P (β)

where ∨ denotes a logical disjunction and > denotes a logical truth. P is referred

to as the probability distribution over L. P (α) is called the probability of α. The

probability funtion P is therefore a means by which an agent can assign degrees

of beliefs to sentences in L. The first condition states that the probability of any

sentence should be between 0 and 1. The second condition says that if the sentence

is a logical truth it is assigned a probability of 1. The third condition states that if

two sentences cannot be true at the same time, the probability of their ’combination’

is the sum of their probabilities (i.e. P (α ∨ β) = P (α) + P (β)).

A Belief Set K is said to be associated with a probability function if and only if

every belief α in K is assigned a probability of 1, P (α) = 1, α ⊆ K. The set of all

sentences such that P (α) = 1 is known as the top of a probability function and it pro-

duces a Belief Set. However, P is not the only probability function that produces the

Belief Set K. This is called the Non-uniqueness Problem (Lindström & Rabinowicz,

1989). It is possible that there may be another probability function that produces the

same Belief Set. This, however, is not a problem for the conceptualisation presented

in this thesis, since the reverse is not true. For any given P -function there is a unique

Belief Set.

In classical logic, propositions are viewed as having a certain set-theoretic struc-

ture. This view enables representation of propositions as a set of Possible Worlds in

which the propositions are true. As discussed in Chapter 2, the possible worlds view

provides a logical semantics for integrating probability and logic.
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In the possible worlds representation, degrees of belief are modelled on Possible

Worlds. The language of possible worlds is more intuitive and more natural to prob-

ability theory. The agent’s uncertainty is about which among all the possible worlds

is the actual world in the current time slice. The set of propositions, defined as a set

of sets of Possible Worlds, is an algebra A over a non-empty set of possible worlds

W . An algebra A is a set that contains W and is closed under complementation and

finite intersections. Thus, if a proposition A is in A, then ¬A is also an element of

A. Closed under finite intersection implies that if A1, A2, A3..., An are elements of A,

then A1 ∩ A2 ∩ A3 ∩ ... ∩ An is an element of A.

More formally, let an Algebra, A, over a set of all possible worlds W be defined

as follows:

Definition 3.1 : A is an algebra over W iff A ⊆ P(W), the power set of W,

such that given proposition A and B (Spohn, 2012),

a. W ∈ A

b. if A ∈ A, then A ∈ A

c. if A,B ∈ A, then A ∪B ∈ A

d. for each countable B ⊆ A,
⋃
B ∈ A. That is A is a sigma algebra.

The best developed account of degrees of belief is the theory of subjective prob-

abilities (Huber, 2009). In this view, degrees of belief follow the laws of probability

and are governed by Kolmogorov (1956) laws of probability. A function P : A → R

from the algebra A to a set of real numbers R is a probability on A if and only if:

1. P (A) ≥ 0

2. P (W) = 1

3. P (A ∪B) = P (A) + P (B), if A ∩B = ∅



42

The triple (W ,A, P ) are referred to as the probability space. Such a probability space

defined over possible worlds provided the basis for the definition of an epistemic space

over possible Bayesian Networks defined in Chapter 4.

3.2.3 Belief Change Principles

Research in Belief Change, customarily starts off with a characterisation of the

commitments a rational Belief Change function should satisfy. These commitment are

usually presented as a set of postulates that a Belief Change function should satisfy.

Flouris, Plexousakis, and Antoniou (2006) identified a partial list of six principles

that these postulates are drawn from. Following are the principles:(i) primacy of new

information; (ii) irrelevance of syntax; (iii) consistence maintenance; (iv) Fairness;

(v) adequacy of representation; and (vi) minimal change

Principle of Primacy of New Information: It is usually assumed that observations

are observed with certainty and common intuition dictates that newer information

generally reflects a newer and more accurate view of a domain. It is against this

argument that the principle of primacy of new information is derived. A represen-

tation of knowledge about a given domain must therefore be able to accept the new

information unconditionally. However, owing to the pervasiveness of uncertainty in

open and dynamic computing environments (especially the web) this principle may

need to be relaxed. In classical Belief Change, a lot of work has been done under the

auspices of non-prioritised Belief Change (Hansson, 1999; Meyer, Ghose, & Chopra,

2001). Non-prioritised Belief Change allows new information to be rejected partially

or totally. This is one area where probabilistic knowledge representations have an ad-

vantage over deterministic ones since they have principled mechanisms for handling

uncertainty.

Principle of Irrelevance of Syntax : First Order logic is known to be very flexible in

the specification of axioms. This has raised worries about whether the Belief Change

operation will not be affected by the syntactical representation of the Knowledge Base
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or the new information. This gave birth to the principle of irrelevance of syntax.

It states that “revision of two logically equivalent knowledge bases formed using

completely different axioms should result in two logically equivalent knowledge bases

regardless of the differences in syntax”. This principle is more prone to violation

in Belief Bases under the foundational view point. In the foundational approach

different sets of axioms imply different justifications for some axioms.

Principle of Consistence Maintenance: Anything can be inferred from an incon-

sistent Knowledge Base. As such, under whatever circumstances, revision of a Knowl-

edge Base should result in a consistent Knowledge Base, otherwise there is no point

in revising the Knowledge Base. The principle of consistency dictates that the Belief

Change operator should not result in an inconsistent Knowledge Base. However, the

term consistence has been used to refer to different things in knowledge representation

and database technology. The augments for consistency still stand though,regardless

of how consistency is defined. Consistency should be maintained after revision/update

of a Knowledge Base.

Principle of Fairness : The principle of fairness guarantees objectivity and re-

producability of the result of a Belief Change. A Belief Change operator should be

objective enough to reproduce the same result if a revision by the new information is

repeated on the same knowledge base at any time. This is quite a challenge in cases

where the Belief Change operation is intractable and heuristics have to be used. In

such cases the operator might converge to one local optimal solution at one time and

to another local optimal solution at another time.

The Principle of Adequacy of Representation: The knowledge representation lan-

guage should be rich enough to represent the KB , the new information and the

resultant KB.

Principle of Minimal Change: Rationality is widely believed to be economical with

what is already believed. That is the revised KB should conserve as much of what

was believed before revision as possible. This is known as the principle of minimal

change. However, the challenge is on how minimal change is to be defined.
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In classical Belief Change there are two main approaches to modelling rational Be-

lief Change; the Foundational Theory and the Coherence Theory. In the Foundational

Theory one needs to keep track of the justification for one’s beliefs. Propositions that

do not have justification should not be accepted as beliefs. That is, according to

this theory, revision of a Belief Set by a sentence, α, should consist of first giving

up all beliefs that will no longer be satisfactorily justified if α is accepted in to the

Belief Set, then adding all the beliefs that are justified by the introduction of α. The

Truth Maintenance System (TMS) (Doyle, 1979) is a the flagship realisation of the

foundational approach to Belief Change. The TMS is a system for keeping track of

justifications in Belief Revisions. As such, whenever some beliefs have to be given up

the TMS is consulted to check which beliefs are not justified.

In the coherence theory, the aim is to maintain consistency in the Belief Set revised

by α, whist ensuring minimal changes. In the coherence theory, beliefs are accepted

on the basis of how coherent they are with what is already believed. Although the

coherence theory does not directly provide justification for any beliefs held, justifica-

tions for a belief are provided holistically. Whether a belief is believed depends on

how well it fits together with everything else that is believed. As can be seen so far

the key principles of the coherence theory are consistency maintenance and minimal

change.

The foundational theory has severe problems handling logical relations between

beliefs. As a result the coherence theory is usually preferred. This, coupled with the

fact this thesis is investigating Belief Change in Frame-based FOPL dictates that we

consider the coherence view to Belief Change. The focus of the study will be primarily

on the principle of minimum change and consistency maintenance. The discussion

that follows will look deep into Belief Revision and Belief Update. In principle, both

Belief Change types try to explain the source of incorrect beliefs at any given time

but make different assumptions about the sources of incorrect beliefs.
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3.3 Belief Revision

Belief Revision has been widely understood as the process of incorporating some

new information about a static world in a Belief Set. In static worlds, belief changes

are only necessitated by the fact that the system’s beliefs about the world are mistaken

or incomplete since there will be no changes in the domain. Belief Revision takes a

coherence view of Belief Change, which advocates that credibility of an axiom depends

on how coherent it is with other axioms in the Knowledge Base (KB). The premise

behind the coherence view is, if a Belief Revision operation calls for some beliefs to

be retracted (in order to keep the KB consistent after the Belief Change operation),

the relative entrenchment of a belief depends on how coherent the belief is with other

beliefs in the Belief Set. The most popular Belief Revision theory in qualitative Belief

Change is the AGM theory (Alchourrón, Gardenfors, & Makinson, 1985). Given a

Belief Set K, AGM theory defines a set of postulates that govern the process of

revising K by new information α not present in K (for more on the AGM postulates

see ((Alchourrón, Gardenfors, & Makinson, 1985),(Benferhat, 2010)).

Assuming a logically finite, classical propositional language, denoted by L, conse-

quence operation Cn, and revision operator ∗, the AGM postulates for Revision are

as follows:

(R1) Closure: K ∗ α = Cn(K ∗ α)

(R2) Success: α ∈ K ∗ α

(R3) Inclusion: K ∗ α ⊆ K + α

(R4) Vacuity:If ¬α /∈ K, then K ∗ α = K + α.

(R5) Consistency: K ∗ α is consistent if α is consistent.

(R6) Extensionality: If (� α ≡ β) ∈ Cn(∅), then K ∗ α = K ∗ β.

(R7) Superexpansion: K ∗ (α ∧ β) ⊆ (K ∗ α) + β
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(R8) Subexpansion: If ¬β /∈ Cn(K ∗ α), then (K ∗ α) + β ⊆ K ∗ (α ∧ β).

where α and β are some logical sentences such that α, β ∈ L.

Closure ensures that when a Belief Set is revised by α, the resulting Belief Set

holds all the logical consequences of α. Success postulates ensures that revision by α

should result in the acceptance of α. This speaks to the principle of primacy of new

information. The inclusion postulate states that the resulting Belief Set of expanding

K by α should at least hold all beliefs of the result of revising K by α. The consistency

postulate ensures that if α is consistent, then revision of K by α should be consistent.

Unfortunately, though the AGM postulates are sound in principle, they do not detect

which beliefs are to be given up if the Belief Set is found to be contradictory to

the new information. This has resulted in alternative Belief Revision mechanisms

that are based on the concept of epistemic entrenchment. A belief is said to more

entrenched in the Belief Set if agents are less willing to give it up. Less entrenched

beliefs will be preferentially given up to accommodate new beliefs. The solutions that

use this concept include the Entrenchment Relations (Grdenfors & Makinson, 1988),

Ordinal Conditional Functions (OCF) (Spohn, 1988), Minimal Conditional revision

(Boutilier, 1996). The basic principle in these solutions, is using some sort of ordering

or ranking of the beliefs based on the agents’ unwillingness to give them up. This

ranking is used as a mechanism for deciding which beliefs should be given up to accept

a new belief. Such a ranking of Beliefs is known as the Epistemic State, and it is a

very important component for Belief Change operator. To shed more light on the

semantics of epistemic states and how they are used for Belief Change, the discussion

that follows focuses on Spohn’s qualitative ranking (Spohn, 1988).

Assuming a fixed set of possible worlds, the OCF operator maps all worlds in into

a set of natural numbers (ranks) based on the agents’ willingness to give each one

of them up. Such a ranking κ : W → N assigns to each world, a natural number

reflecting its plausibility. If κ(w) < κ(v), then w is more plausible or more consistent

with the agents’ beliefs than v. The maximally plausible worlds are given rank zero
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(0) and the impossible worlds are given rank ∞. This ranking induces the Belief Set

and a revision function. The Belief Set K is given by

K = {α ∈ L : κ−1(0) ⊆ ||α||} (3.1)

where, L is logically finite propositional language defined over a set of sentences, α

is an element of L, and ||α|| is a set of α − worlds, the elements of W satisfying α.

Later in this chapter the symbol, αji is used to explicitly denote a sentence as an edge

from node j to node i in a Bayesian Network. A Bayesian Network is interpreted to

be a possible world. The edge αji is said to be entailed by the Bayesian Network

B, denoted by B � α. The revision function takes the most plausible worlds that

entail α as the epistemically possible worlds. Thus the revision function min(α, κ),

produces the revised Belief Set K∗α, defined as follows:

K∗A = {β ∈ L : min(α, κ) ⊆ ||β||} (3.2)

That is, a propositional atom is accepted in the revised Belief Set (β ∈ K∗α) iff

min(α, κ) ⊆ ||α||. An analogical conceptualisation of this idea in quantitative Belief

Revision is obvious. Probabilities can easily be used as a basis for ordering or ranking

the plausible worlds. A discussion of the quantitative analogical conceptualisation

Belief Revision will be presented in Chapter 4.

Apart from Belief Revision, there are two other Belief Change operations that

are discussed along with Belief Revision. Original work on AGM identified two other

belief operation; Belief Expansion and Belief Contraction.

Belief Expansion deals with a situation where a non-belief is made a belief. This

is a situation where an agent acquires new information, which is not contrary to its

current beliefs. Thus, given a belief α and a Belief Set K, the result of an expansion

of K with α is denoted by K+
α and in formal Belief Change terms is given by:

K+
α = Cn(K ∪ α) (3.3)
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Cn denotes the logical consequence of the resulting Belief Set.

Belief Contraction arises when the agent receives some new information inconsis-

tent with the currently held beliefs (explicit beliefs and their logical consequences).

Thus, Belief Contraction transforms beliefs into non-beliefs. This is more compli-

cated than expansion. This is mainly because in Contraction, like Revision, there is

no unique way of constructing the resulting Belief Set simply based on Information

Economy.

Belief Revision is related to Belief Contraction and Belief Expansion through the

Levi identity (Levi, 1977), which is defined as follows:

K∗α = (K−¬α)+α (3.4)

3.4 Belief Update

A lot of work has been done on Belief Change in dynamic worlds (Belief Update),

but the proposed approaches still remain less popular as compared to the approaches

for Belief Revision. The work by Katsuno and Mendelzon (1991), known as the KM

theory, on Belief Update has attracted considerable attention. The KM theory uses

the event model to capture knowledge changes in a dynamic world. The KM theory

takes observation of a new axiom as evidence that there have been a change in the

world. If some new fact α is observed, update assumes that it is a result of some

unspecified change in the world (i.e some event occurrence or action). The resulting

KB is not known except for the fact that it accepts α. There are many possible

candidate KBs, so the challenge is that of identifying the KB closest to the true

representation of the knowledge about the domain. Katsuno and Mendelson (1991)

proposed a general characterisation (postulates) of Belief Update that provides the

constraints that must be satisfied to reflect the changes in the domain.

Using � as the update operator, Katsuno and Mendelzon (1991) defined the fol-

lowing postulates for Belief Update:
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(U1) KB � α � α.

(U2) If KB � α, then KB � α ≡ KB.

(U3) If KB and α are both satisfiable, then KB � α is satisfiable.

(U4) If � α ≡ β, and KB1 ≡ KB2, then KB1�α ≡ KB2�β.

(U5) (KB�A) ∧ β � KB � (α ∧ β).

(U6) If KB � α � β, and KB � β � α, then KB � α ≡ KB � β.

(U7) If KB is complete, then (KB � α) ∧ (KB � β) � KB � (α ∨ β).

(U8) (KB1 ∨KB2) � α ≡ (KB1 � α) ∨ (KB2 �B).

where α and β are some logical sentences such that α, β ∈ L.

If α, a result of some change in the world, is observed, one would like to consider

all the possible explanations for what might have changed to make α true and choose

the most plausible explanation for how the world may have changed to accept α.

Katsuno and Mendelson (Katsuno & Mendelzon, 1991) proposed a set of preorders

over the set of possible worlds, W , �w: w ∈ W . The relation �w is a reflexive and

transitive over mathcalW . The relation u �w v, means u is as at least as plausible a

change as v relative to w. This intuitively means that, if at time t, w was believed to

be the true state of the world, then the world is more likely to transition to world u

than to v. The most plausible world after observation of α is therefore the minimal

worlds with respect to w that result in acceptance of α.

Just as in the case of the AGM theory in revision, the KM theory does not dictate

which beliefs are to be given up if the Belief Base is found to be inconsistent with the

new information. To counteract this weakness the κ-rankings can also be adopted

to define Epistemic States for the KM theory. Each world v is simply associated

with ranking such that the set κ−1(0) is the set of the most plausible worlds and use

min(α, κw) as the update function.
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3.5 Unified Belief Change Models

If the world is dynamic, both Belief Revision and Belief Update can provide pos-

sible explanations for the misconceptions in the Knowledge Base. This has prompted

research efforts aimed at unifying Belief Revision and Belief Update in one Belief

Change operator. Examples of such works include (Boutilier, 1998; Friedman &

Halpern, 1998; Hunter & Delgrande, 2005; Shapiro & Pagnucco, 2004). The work

presented in this thesis extends such work, and particularly the Belief Change model

proposed by Boutilier (1998) by: (i) defining a Unified Belief Change Model based on

probability as the measure of degree of belief; and (ii) enabling the model to be used

for Belief Change in FOPL. Further discussion on this model is given in Chapter 4.

An investigation of literature revealed that there are two alternative ways through

which Belief Update semantics can be combined with Belief Revision semantics to

enable reasoning about a dynamically changing system. Either,

1. Modelling epistemic states in a temporal space and then define state transition

probabilities or,

2. modelling event plausibility semantics that can be used to explain state transi-

tions.

Modelling epistemic states in a temporal space is the most widely used solution

in modelling dynamical systems. It finds its origin in classical probability theory and

it leverages upon the Markov assumption.

Definition 3.1: A Markov Chain (Kemeny & Snell, 1983) over states S1, S2, S3,

... is a measure P on a set of worlds W such that:

i. P (Sn+1 = sn+1|Sn = sn, Sn−1 = sn−1, ..., S0 = s0) = P (Sn+1 = sn+1|Sn = sn)

ii. P (Sn+1 = a|Sn = b) = P (Sm+1 = a|Sm = b),m 6= n

The first requirement speaks to the “forgetfulness” of Markov processes. Thus,

the probability of a transition from state Sn+1 = sn+1 to Sn = sn is independent
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of states preceding Sn = sn given Sn = sn. The second requirement (the invariance

assumption) states that the probability of a transition from one state to another is in-

dependent of the time of the transition. Although this approach is believed to be able

to model most real world situations, this thesis argues that it is insufficient for mod-

elling state transitions in evolving FOPL graphical structures. The evidence that’s

been observed so far has an effect on the transitions probabilities, hence they cannot

be assumed to be constant overtime. Thus, the problem with this approach emanates

from the second requirement in Definition 3.1. This calls for richer semantics to

model the dynamics of the network structure as evidence is being observed. This

is where solutions that use event probabilities become advantageous. The argument

in event-based semantics for belief change is that events that occur in the domain

provides an impetus for change in the domain. In solutions that include event seman-

tics (e.g. (Boutilier, 1998; Jin & Thielscher, 2004; Lang, 2007; Shapiro & Pagnucco,

2004)) the transition probabilities are assumed to be dependent on occurrence of cer-

tain observable events in a given state. However, this cannot be directly adopted for

evolution FOPL network structures since Network structure change events in Prob-

abilistic Graphical Models are not observable. Fortunately, classical approaches to

learning Bayesian Network structures have some techniques we can leverage upon to

address this challenge. These techniques are discussed in Chapter 4.

Roughly, Belief Revision treats new information as evidence that the previous

beliefs were incorrect, while Belief Update treats new information as evidence that

the world has changed, hence what has been observed is the least that could have

possibly changed. In reality, observation of new information may imply revision,

update or both. This calls for a unified Belief Change model that caters for both

Belief Revision and Belief Update. A lot of effort has been directed towards this goal

for qualitative belief change (e.g (Boutilier, 1995; Friedman & Halpern, 1998; Lang,

2007), but not much has been done with respect to probabilistic Belief Change. The

discussion that follows, focuses on how this is done in qualitative Belief Change and

highlights techniques that can be adapted for the quantitative counterpart.
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The major problem with Belief Revision is that in its original form it cannot

handle change in dynamic environments rendering it unsuitable for real life appli-

cations and more specifically for this thesis’ problem context. On the other hand,

belief update in its original form does not allow inferring new beliefs about the past

from latter observations. Unified Belief Change models are believed to address the

afore-mentioned weaknesses of Belief Revision and Belief Update by making them

complement each other.

Notable amongst the work on Unified Belief Change Models, is the work by

Boutilier (1998). Boutilier (1998) assumed that events that occur in a given world

provide an impetus for change in the domain and used plausibility distribution over

events to model epistemic states for a belief update model. This formed the first step

of the belief change model that captured update. To handle revision, Conditional-

isation was used. Thus, a unified belief change model was modelled as a two-step

process that involves update first and then followed by revision of the updated belief

state conditioned on evidence. An indepth discussion of the Boutilier’s Unified Belief

Change Model will be given in chapter 4. The unified Belief Change model defined in

this thesis builds on this model. The Belief Change Meta Model presented in chapter

4 is a lifted abstraction of Boutilier’s model.

3.5.1 Iterated Belief Change

One of the key weaknesses of early Belief Change models is their inability to han-

dle iterated belief change (Darwiche & Pearl, 1997). This makes it impossible for

machines to be able to automatically evolve their knowledge bases as they acquire

new information. The problem stems from the fact that these models, given a Belief

State, an Epistemic State and some observation, are only able to give the Belief State

and not the Epistemic State. As can be deduced from the foregoing discussion, it is

the epistemic state that provides the guidance for changes in belief due to subsequent

observations. Thus, to enable Iterated Belief Change the result of a Belief Change
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should give both the Belief State and the Epistemic State. What has been discussed

so far deals with how the Belief State is changed and not the Epistemic State. As

discussed in much of the related literature (e.g. (Boutilier, 1998; Darwiche & Pearl,

1997; Hunter & Delgrande, 2005)), the Belief Change operator should change the

Epistemic State and the Belief State will be generated as set of maximal worlds from

the Epistemic State. To understand the requirements for Iterated Belief Change, it is

imperative that the relationship and the differences between the Belief State and the

Epistemic State be highlighted. A Belief State characterises the set of propositions

that the agent is committed to at a given time. An Epistemic State holds the rela-

tive entrenchments of all propositions relative to the current belief state conditioned

on the hypothesised evidence. Effectively, a Belief Change operator will change these

relative entrenchment when some evidence is observed and the Belief State will be the

maximal set of worlds from the Epistemic State. In Quantitative Belief Change, the

Epistemic State can be thought of as a probability distribution over all the possible

worlds, and the corresponding relative propensities (given in terms of event probabil-

ity distributions conditioned on possible worlds) of moving from one possible world

to another.

3.6 Other perspectives to Belief Change in Dynamic Domains

There are other perspectives to Belief Change that have been discussed in liter-

ature. These include Imaging (Lewis, 1976), and Focusing (Dubois & Prade, 1997).

Another concept which is also similar to solutions for Belief Change in dynamic do-

mains is Concept Drift (Kadlec, Grbić, & Gabrys, 2011).

3.6.1 Imaging and Focusing

Imaging (Lewis, 1976) is the starting point for a lot of work that has looked

at probabilistic revision. Imaging as introduced by Lewis (1976) is much closer to

Belief Update than Belief Revision. The Imaging of a probability function P on the
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evidence /alpha constitutes a new Belief State (probability function) obtained by

shifting the original probability mass(relative entrenchment) of the worlds where ¬α

is true(¬α−worlds) over to the worlds where α is true (α−worlds) that are assumed

to be closest to the ¬α−worlds. The probability mass is shifted to the worlds closer

to the ¬α − worlds to ensure minimal change. There are however other works on

belief change that rather shift the probability of the ¬α−worlds and the worlds close

to them to the worlds that are as far from them as possible (e.g. (Rens & Meyer,

2015)). The intuition of such Belief Change operators is that the closer the world w

is to the ¬α − worlds the less probable the world is. Thus, probability mass should

therefore be shifted as well from w as we shift probability mass from ¬α − worlds.

However, such Belief Change solutions are more likely not to adhere to the principle

of minimal change compared to Imaging as originally proposed by Lewis (1976).

Focusing (Dubois & Prade, 1997) seeks to make a distinction between two com-

ponents of the body of knowledge: (i) generic knowledge and (ii) factual evidence.

Dubois and Prade (1997) argue that belief revision deals with modifying generic

knowledge when receiving new pieces of generic knowledge, while focusing deals with

applying generic knowledge to the reference class of situations, which corresponds to

all the available evidence gathered on the case under consideration. The difference

between generic knowledge and factual evidence can be illustrated by a diagnosis

problem. The generic knowledge of a clinician consists in his/her knowledge about

the links between the diseases and the symptoms and the distribution of the diseases

in the original population (in practice, the likelihoods and the prior probabilities).

The factual evidence consists in the symptoms collected from the patient under con-

sideration. Focusing then applies the knowledge about the the links between diseases

and the symptoms to a specific situation focusing on the subset of beliefs that are

within the current focus of attention. Thus, focusing is more of an inference solution

rather than a Belief Change solution.
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3.6.2 Concept Drift

The field of Concept Drift (Kadlec, Grbić, & Gabrys, 2011; Moreno-Torres et al.,

2012; Žliobaitė, Pechenizkiy, & Gama, 2016) emanated from the machine learning

community as a response to the observation that predictive performance of generative

models degrade over time if the models assume static relationships between input and

output variables. This is owing to the fact underlying relationships in the data change

over time with the changes in the domain. The changes in underlying relationships in

the data are a reflection of the changes in the environment the data is being emitted

from. The goal of Concept Drift in machine learning is to deploy models that would

self-diagnose and adapt to changing data over time (Žliobaitė, Pechenizkiy, & Gama,

2016). This goal is similar to what this thesis seeks to achieve. However, the solutions

that have emanated from concept Drift are different to the goal of this research in

the following respects: (i) The focus of Concept drift solutions is on prediction rather

than an explicit representation of the belief state of the domain; (ii) The solutions

give primacy to the new evidence and pays no attention to the principle of minimal.

This means rationality in the evolution of the predictive models is not of interest in

Concept Drift solutions.

3.7 Conclusions

This chapter discussed the researcher’s findings from a literature survey of tech-

niques for belief change in general with more emphasis on dynamic environments.

This thesis takes a coherence view to Belief change. The coherence view presupposes

that beliefs are removed or entrenched based on their coherence to other belief that

are accepted. Belief Revision and Belief Update are the most widely studied Belief

change solutions based on the coherence view. Belief Revision and Belief Update

make different assumptions on the source of inconsistencies in Knowledge Bases. Be-

lief Revision assumes that inconsistencies arise from incorrect propositions in a world

that is assumed to be static, while Belief Update assumes that inconsistencies arise
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from changes in the domain. However, most real life applications of Belief Change

involve both types of change. Thus, there has been a lot of work that seeks to create

a unified Belief Change model that caters for both revision and update. The unified

Belief Change Model developed in this study is based on one such model proposed

by Boutilier (1998).

One of the key requirements to enable automatic evolution of knowledge bases

in dynamic domains is support for iterated revision. This was one of the major

limitations of the early Belief Change models. Research in Belief Change generally

agree that for this to be possible there is a need that the result of Belief Change

operation be an Epistemic State rather than a Belief State. As will be seen in Chapter

4, this thesis defined an epistemic state as tuple of two probability distributions; one

over all plausible events given some hypothesised Belief State and the other over all

plausible Belief States.

This chapter also discussed other views to Belief Change that are conceptually

related to Belief Revision and Belief Update, but not necessarily based upon these

concepts. These included Imaging, Focusing and Concept Drift. The Distinction

between Generic Knowledge and Factual Evidence is very important to Belief Change

if it is to be used as basis for a logical framework through which machines can do

science. Belief Change necessitated by the temporal dynamics of a domain may

only need to be used for inferences rather than change of the generic knowledge

representation. This aspect is outside the scope of the work presented in this thesis.
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4. THE UNIFIED BELIEF CHANGE MODEL FOR

BAYESIAN NETWORK STRUCTURES

“Not to be absolutely certain is, I think, one of

the essential things in rationality.”

Bertrand Russell

4.1 Introduction

This chapter presents the Unified Belief Change Model for Bayesian Network

based knowledge Representations in open and dynamic computing environments. If

Bayesian Network based FOPL is used for knowledge representation in open and

dynamic domains as proposed in Chapter 2, there is a possibility of observations

becoming inconsistent with the underlying Bayesian Network structure owing to the

dynamic nature of the domain. In such cases the network structure needs to be

rationally evolved to reflect the changes in the domain (Belief Update), and to correct

incorrect beliefs about the domain (Belief Revision).

Even though some work has been done on structure learning in Bayesian Network

based First order knowledge representation (e.g. (Getoor, 2000), (Natarajan, Wong,

& Tadepalli, 2006), (Kersting & Raedt, 2008), (Coutant, Leray, & Le Capitaine,

2014) (Ettouzi, Leray, & Messaoud, 2016)), the focus has been on how the network

structure can be automatically learnt from data, given some prior knowledge about the

structure. In these solutions, the emphasis is on estimating the network structure that

will then be assumed to be constant thereafter. If the structure becomes inconsistent

with the observations, the structure has to be re-learnt from the observations emitted

from the domain. As a result, such solutions do not consider the problem from a
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Belief Change perspective where the structure can be automatically evolved as the

data inconsistent with the current network structure is observed.

In classical logic, the problem of rationally capturing and effecting changes in be-

liefs about the domain is addressed by techniques that have emanated from the field

of Belief Change. Belief Change techniques seek to provide mechanisms for evolving

knowledge representation in a rational manner. The solution to Belief Change formu-

lated in this chapter draws inspiration from the work that has been done on rational

Belief Change in classical logic.

4.2 Overview of the Proposed Belief Change Solution

As highlighted in most research works on learning Bayesian-based First Order

Probabilistic models (e.g. (Getoor, 2000; Natarajan, Wong, & Tadepalli, 2006)),

structure learning in First Order Bayesian models is fundamentally the same as that

of propositional Bayesian Networks (Getoor, 2000). Hence, a solution to the research

problem being investigated in this study for propositional Bayesian Networks can

be easily extended to First Order Probabilistic logic. Hence, the discussions of the

problem and the solution hence forth are going to be in the general context of Belief

Change in propositional Bayesian Networks. At this point, it is also important to

highlight that the Unified Belief Change Model formulated in this work builds upon

the significant progress that has been made on Bayesian Network structure learning

in propositional Bayesian networks. Researchers have over the years made signif-

icant progress in formalising the theory of Bayesian structure learning (Benferhat,

2010; Cooper & Herskovits, 1992; Friedman & Goldszmidt, 1997; Neapolitan, 1990)

and development of efficient algorithms for learning Bayesian structure using prior

knowledge (Chickering, Heckerman, & Meek, 1997; Eggeling et al., 2019; Heckerman,

Geiger, & Chickering, 1995; Liu et al., 2018; Zhao et al., 2015). Notwithstanding

these substantial advances in Bayesian structure learning, there has been no focus

on whether these structure learning algorithms adhere to the principles of rational
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Belief Change. Usually, as noted in (Benferhat, 2010; Dubois, 2008), Belief Change

in Bayesian networks is usually thought of as simple propagation of probability mass

in the network as a result of observations consistent with the dependencies encoded

in the Bayesian Network structure.

However, in dynamic domains observations are not always bound to be consistent

with the Bayesian network structure. This calls for a mechanism for Belief Change

on the Bayesian network structure when evidence inconsistent with the structure

is observed. This is very important if Bayesian networks are to be the underlying

formalism for knowledge representation. This work therefore contributes toward ad-

dressing this issue by deriving a Belief Change Model for Bayesian network structures

representing knowledge in dynamic domains. This thesis argues that for both Belief

Update and Belief Revision to be captured, there is a need for a mechanism for han-

dling event semantics as is done in classical Belief Change. The events are believed to

be the ones that provide an impetus for change in the domain (Boutilier, 1998). From

this assumption, a knowledge representation of a given domain is modelled as a dy-

namical system and a dynamic Bayesian network is defined to capture the dynamics

of the knowledge representation. This highlights the first contribution of this thesis, a

Belief Change meta-model, which forms the basis of the Unified Belief Change Model

defined in this chapter.

In most solutions for modelling dynamic systems, the world is assumed to change

owing to some observable actions/events. In modelling evolution on Bayesian network

structure, the observations and the events that may have caused a change in the

domain are unobservable. This implies that solutions, such as Partially Observable

Markov Decision Processes (POMDP), which assume that changes in the domain are

a result of observable ontic actions/events cannot be directly adopted for modelling

Belief Change in Bayesian Network structure.

The Belief Change Model derived in this chapter is validated by analogy with two

classical Belief Change theories. To the best of the author’s knowledge, the work pre-

sented in this thesis is the first attempt to consider Bayesian structure learning from
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this perspective. The goal in this endeavour is to argue the possibility of using Belief

Change principles to solve the structure learning problem in First Order probabilistic

knowledge representation and the efficacy of such an approach.

4.3 Preliminaries

This section introduces the problem that this work is addressing using a motivating

example. The section also discusses the basic concepts this work builds upon, some

notation, and definitions from the fields of Belief Change and Bayesian Structure

learning.

4.3.1 Conceptualisation of the problem

To conceptualise the problem at hand, consider a domain whose knowledge can

be represented by a Bayesian Network (BN) Structure with four (4) nodes shown in

Figure 4.1. Figure 4.1 models the knowledge about acceptance of a research paper

for publication. Suppose at time t, it was believed that the acceptance (acpted(p, j))

of a paper (p) for publication in journal j depends on whether the paper is a good

paper (GP (p)), the reputation of the author(s) RA(p) and whether the journal uses

double–blind review (DBR(j)). This is represented by BN structure in Figure 4.1.

This translates to the following First Order Logic (FOL) statements; ∀p∀jRA(p) →

Acpted(p, j), ∀p∀jGP (p) → Acpted(p, j) , and ∀p∀jDBR(j) → Acpted(p, j) with

logical variables p and j representing a research paper and a journal respectively.

Now, suppose that at time t + 1, the data emitted from the domain seems not

to support the proposition that the acceptance of a paper in a journal depends

on the reputation of the authors. The dependency ∀p∀jRA(p) → Acpted(p, j) in

Figure 4.2 could have been a result of the fact that reputable authors write good

quality papers and as result their papers are accepted on the merit of their qual-

ity regardless of the reputation of the authors. In this case the evidence suggests

the proposition, ∀p∀jRA(p) → Acpted(p, j), must be given up and the proposition,
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Figure 4.1.: An Example BN structure representing beliefs about papers and their accep-

tance in Journals.

∀pRA(p) → GP (p), must be accepted. The resulting BN structure can be any one

the structures that accepts the edge ∀pRA(p) → GP (p). That is, it can be any one

of the structures in Figure 4.2. Owing to the fact that network structures are not

directly observable, one cannot be certain which of these BN structures is the correct

one. One is also not certain as to whether this change is a correction of the incorrect

beliefs about the domain held at time t or evidence of a change that has occurred in

the domain after time t. If it is evidence of a change in the domain, then there is a

possibility that what has been observed is the least of what could have changed in

the domain. How then can the beliefs on the dynamics of the knowledge about the

domain be captured ensuring that the principle of information economy is adhered

to? That is, no beliefs are given up beyond necessity (Rott, 2000). Moreover, one

cannot also be sure of when the evidence is compelling enough to effect a change in

the beliefs about the domain.

Belief Change tries to address these challenges by giving a mechanism by which

the beliefs about the domain should be changed in light of the observations while

ensuring minimal change from the beliefs previously held. Typically, Belief Change

handles this problem by keeping a plausibility distribution over all the possible BN

structures. The most plausible BN structure that supports the evidence is assumed to

be the correct BN structure. Belief Revision (Alchourrón, Gardenfors, & Makinson,
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Figure 4.2.: Possible resulting BN Structures after adding the proposition

1985) and Belief Update (Katsuno & Mendelzon, 1991) are the two most widely

accepted and debated approaches to Belief Change. Belief Revision focuses on how

beliefs should be changed when new information is acquired about a domain that is

assumed static. On the other hand, Belief Update focuses on how beliefs should be

changed when it is realised that the world has changed. The key difference between

these approaches is in how the beliefs should be changed after observing something

contrary to what was previously believed. Revision treats the observation of evidence

of ∀pRA(p) → GP (p) as new information that suggests that the quality of a paper,

GP (p), depends on the reputation of the authors(s), RA(p), and accepts the consistent

BN structure that is closest to the BN structure accepted at time t that accepts this

proposition. On the other hand, Update treats this observation as an indication that

a change has occurred in the domain between time t and time t+1 and the observation

of ∀pRA(p) → GP (p) is the least that could have resulted from the change in the

world. At time t, GP (p) was not dependent on RA(p), but there was a change in

the domain that led to this proposition being accepted at time t+ 1. It then tries to

find the most likely change that provides an explanation for this observation. This

change must result in the BN structure that is closest to the BN structure at time t,

among those that accept the new proposition. In real life situations, one would want

to consider quite a number of explanations for the observation at time t+1 depending
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on what is most likely to have happened. Given a dynamic domain it will be very

näıve to assume that the representation at time t was wrong or to assume that the

world has changed without a viable explanation. The Unified Belief Change Model

by Boutilier 1998 is one of the solutions to this problem in classical Belief Change.

The Unified Belief Change Model considers both Update and Revision of a Belief

Base given some observations.

Although Belief Change has been extensively studied, few works address the prob-

lem of Belief Revision and Belief Update of the network structures of Probabilistic

Graphical models (Benferhat, 2010). Only simple forms of revision are considered by

propagation algorithms. These forms of Belief Change can be interpreted as accu-

mulation of evidence consistent with the graphical network and reasoning from the

evidence using the network structure as the background knowledge (Dubois, 2008).

The Network structure itself is never revised nor updated. The evidence is not con-

sidered as a new piece of knowledge that is to be integrated in to the BN structure.

This thesis investigates how such Belief Change can be done in Bayesian Network

structures. It presents a unified Belief Change operator for Bayesian Network based

Knowledge Representations that adheres to the principle of minimal change and caters

for both Belief Update and Belief Revision in evolution of Bayesian Network structure.

4.3.2 Structure Learning in Bayesian Networks

A Bayesian network is a pair (Bs, Bp), where Bs, is a Bayesian network structure

that encodes the assertion of conditional independence and Bp is a set of probability

distributions corresponding to the Bayesian network structure. Bs is a Directed

Acyclic Graph (See Figure 4.1) and a node is a domain random variable. Each

node/variable Xi in the network structure has a corresponding set (which may be

empty) of parent variables, denoted by πi. Xi is independent of its non-children

given its parents. Each arc in the graph represents probabilistic dependencies. The
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probability density function for the variables in the structure is given by the following

equation,

P (X1, X2, X3, ..., Xn) =
n∏
i=1

P (Xi|πi) (4.1)

Learning Bayesian network entails estimating the network structure, Bs, from

data and then subsequently learning the conditional probabilities, Bp. This paper

focuses on learning the Bayesian Network (BN) structure.

Structure learning methods can broadly be categorised into two (2) categories;

Constraint-Based, and Search-and-Score methods. Constraint-Based methods are

based on Conditional independence tests. The intuition is, if all conditional indepen-

dencies between variables can be discovered, they can be can be used to construct

a Bayesian network. These algorithms use a series of conditional hypothesis tests to

learn independence constraints on the structure of the model. Constraint-Based ap-

proach algorithms are relatively faster and less computationally demanding compared

to Search-and-Score methods when the number of variables is very large, have a well-

defined stopping criterion (Dash & Druzdzel, 2003), and are generally asymptotically

correct (Cheng et al., 2002; Peter Spirtes & Scheines, 2000). However, some of the

assumptions on which these algorithms are based mean that there are certain impor-

tant classes of association that the algorithms simply cannot detect. These algorithms

work on the principle of discarding an edge whenever a conditional independence test

fails to rule out independence. They are also unstable owing to their dependence on

the threshold selected for conditional independence testing (Dash & Druzdzel, 2003).

This renders them unreliable in performing conditional independence tests using large

condition sets and a limited data size (Cooper & Herskovits, 1992; Heckerman, Meek,

& Cooper, 2006; Peter Spirtes & Scheines, 2000). Even worse, a conditional inde-

pendence test error can result in a sequence of propagated errors in the subsequent

learning process, resulting in an erroneous graph structure (Dash & Druzdzel, 2003;

Heckerman, Meek, & Cooper, 2006; Peter Spirtes & Scheines, 2000; Zhao et al., 2015).
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Apart from the above-mentioned challenges with constraint-based algorithms,

they will also be found wanting if they are to be used for Belief Change in knowledge

representations, owing to their lack of a natural way of incorporating a prior network

structure in the structure learning process.

Search-and-Score methods (Chickering, 2003; Cooper & Herskovits, 1992; Hecker-

man, 2008; Heckerman, Geiger, & Chickering, 1995) combine a strategy for searching

through the space of possible structures with a scoring function measuring the fitness

of each structure to the data. Search-and-Score methods omit the step of remov-

ing an edge whenever a conditional independence test fails to rule out independence

and proceed directly to evaluating all tentative graph structures provided by some

method via a suitable scoring metric. This helps the method to not be too restric-

tive. However, learning the structure from data by considering all possible structures

exhaustively is usually not feasible in most domains (Chickering, 2003), since the

number of possible structures grows exponentially with the number of nodes (Cooper

& Herskovits, 1992). Hence, structure learning requires either sub-optimal heuristic

search algorithms or algorithms that are optimal under certain assumptions. As a

result of the foregoing, Search-and-Score algorithms are heuristic and usually have no

proof of correctness (Cheng et al., 2002).

Assuming the initial network structure is known, Search-and-Score methods are

good candidates for learning evolving network structures for Knowledge representa-

tions. This is owing to the fact that they allow incorporation of prior beliefs about the

network structure (Heckerman, Geiger, & Chickering, 1995) into the structure learn-

ing process. Further to this fact, the learning process is based on conditionalisation

which is known to adhere to the principle of minimal change required in Belief Change

(Harper, 1975; P. M. Williams, 1980). This makes Search-and-Score methods bet-

ter candidates for evolving Bayesian network structures for knowledge representation

compared to constraint-based methods, though at the cost of efficiency.

Search-and-Score methods search through the space of all possible structures look-

ing for a structure that best fits the data. Such a structure will have the highest
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probability given the data. The probability of a given network structure given some

observations is given by the following equation:

P (Bs|D) =
P (D|Bs)P (Bs)

P (D)
(4.2)

Since P (D) is constant for all network structures, it can be taken as a normalising

constant. Thus, P (Bs|D) ∝ P (D|Bs)P (Bs) = P (D,Bs). This means the network

structure that best fits the data has the highest P (D,Bs). To compute P (D,Bs), the

following assumptions (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering,

1995; J. D. Williams & Young, 2007) are made:

i. The data is observable and a multinomial sample from some Bayesian Net-

work;

ii. The cases appear independently given a Bayesian Network;

iii. There are no cases with variables with missing values;

iv. Parameters associated with different nodes are globally and locally indepen-

dent, i.e.: (a) the conditional probabilities associated with different nodes are

independent of each other, i.e. P (Xi|πi = ωk) and P (Xi|πi = ωl), k 6= l, are

independent; (b) the conditional probabilities associated with parents’ differ-

ent instantiations are also independent, i.e. P (Xi|πi) and P (Xj|πj) , i 6= j ,

are independent. Here ωk is the kth value of Xi’s parents;

v. Parameters satisfy “Parameter Modularity”. If Xi has the same parents in

any two Bayesian Networks structures Bs
1 and Bs

2, then the parameters with

respect to Xi are the same for both structures;

vi. The prior knowledge about the possible BN structure can be expressed as the

prior probability distribution over all possible BN structures, P (Bs).

Theorem 4.1: Let X be a set of n discrete variables, where a variable in X

has ri possible value assignments: (vi1, vi2...,vir). Let D be a database of m cases,
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where each case contains a value assignment for each variable in X. Let Bs denote

a belief-network structure containing just the variables in X. Each variable Xi in

Bs has a set of parents, which we represent with a list of variables . Let wij denote

the jth unique instantiation of πi relative to D. Suppose there are qi such unique

instantiations of πi . Define Nijk to be the number of cases in D in which variable

Xi has the value vik and πi is instantiated as wik . Let Nij =
∑ri

k=1Nijk. Given the

foregoing assumptions;

P (D,Bs) = P (Bs)

n∏
i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

ri∏
k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

(4.3)

This is what is generally known as the Bayesian Dirichlet (DB) score. The DB

score can be extended to the Bayesian Dirichlet equivalence BDe score (Heckerman,

Geiger, & Chickering, 1995), which is the most popularly used score metric.

4.4 Formalising the Logical Bonds between Belief change and change in

BN Structure

This section discusses the formalisation of the Belief Change problem on Bayesian

Network Structure in terms of the logical structures that are used in Belief Change.

The discussion will start off by discussing how beliefs will be represented, and then

give the postulates for a Unified Belief Change Model for rational Belief Change in

Structure in Bayesian Networks.

In the AGM (Alchourrón, Gärdenfors, & Makinson, 1985) and the KM (Katsuno &

Mendelzon, 1991), beliefs are represented by a set of logical sentences. In the AGM

theory, beliefs are represented by a Belief Set, and in the KM theory by a Belief

Base. A Belief Set is a set of logical sentences assumed to be closed under logical

consequence, whereas a Belief Base is a set of logical sentences that is not (except as

a limiting case) closed under logical consequence (Hansson, 2017). The distinction on

whether to use a Belief Set or Belief Base as a representations of beliefs emanates from

one of the most debated topics in Belief Revision, the recovery postulate (Hansson,

2017). The recovery postulates states that all the original beliefs are regained if one of

them is first removed and then reinserted (Makinson, 1987). The recovery postulate
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holds in Belief Change models based on Belief Sets, and it does not hold in those

based on Belief Bases. Whilst for Belief Sets two equivalent Belief Sets may behave

differently under operations of change, two equivalent Belief Bases always behave the

same under operations of change (Hansson, 2017). As a result, it is at times preferred

to work with Belief Bases to gain dynamic equivalence between two equivalent Belief

Bases at the expense of the recovery. In this work because, we are proposing a Belief

Change solution that caters for both Belief Revision and Belief Update, we use Belief

Bases rather than Belief Sets for representation of Beliefs.

In classical logic, propositions are viewed as having a certain set-theoretic struc-

ture. This view enables representation of propositions as a set of Possible Worlds

in which the propositions are true. This section discusses how such a set theoretic

structure can be defined over a set of all possible Bayesian Network structures as a

set of possible worlds. We take propositions to be objects of belief. A proposition is

represented by a set of possible BN structures (possible worlds) for which the propo-

sition is true. Subjective probabilities will be used as the degree of belief. This thesis

defines an Algebra, A, over a set of all possible BN structures W as follows:

Definition 4.1 : A is an algebra over W iff A ⊆ P(W), the power set of W,

such that given proposition A and B (Spohn, 2012),

a. W ∈ A

b. if A ∈ A, then A ∈ A

c. if A,B ∈ A, then A ∪B ∈ A

d. for each countable B ⊆ A,
⋃
B ∈ A. That is A is a sigma algebra.

A and B are propositions represented using the possible world model view, such that

A = {Bs
i : Bs

i � A} and B = {Bs
i : Bs

i � B}.

Let K = {αji : there is an edge from node Xj to Xi, j 6= i} be a set of propositions

about the existence of a dependence between any two random variables characterising

the domain. In classical logic such a set is known as a Belief Base. Any BN structure,
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Bs
i , that satisfies αji (that is, Bs

i � aji or the dependence (edge) αji exists in Bs
i )

is dubbed the αji − world. Henceforth, the symbols, A, and the αji will be used

interchangeably to denote a proposition. The only difference is, the symbol αji will

be used to explicitly represent a proposition as a sentence, and A to represent the

proposition as a set of worlds (BN Structures) that entails the sentence αji.

Using the afore-defined algebra, a probability function (p-function) over the subset

of the Belief Base K is defined as normalised weighting function P :W → [0, 1] that

satisfies the classical Kolmogorov axioms of probability:

1. 0 ≤ P (A) ≤ 1

2. P (K) = 1

3. P (
⋃
Ai) =

∑
P (Ai), when Ai ∩ Aj = ∅

Drawing inspiration from (Boutilier, 1995), rather than taking Belief Bases as

primitive, the researcher postulates that the primitive component of the epistemic

state is the p-function from which the Belief Base K can be derived. Definition 4.2

therefore follows from this position.

Definition 4.2:A p-function over the possible BN structures, P , is compatible

with a Belief Base K just when P (A) = 1 iff A ∈ K (Boutilier, 1995)

Such a p-function over the possible BN structures induces a p-function over the

proposition via the standard relationship;

P (αji) =
∑

Bs
i �αji

P (Bsi ) (4.4)

where Bs
i � αji means Bs

i semantically entails αji.

The Belief Base at any given time is the top of the p-function over the propositions

(i.e. those αij such that P (αji) = 1. Thus, the Belief Base K is a set all the edges

that exist in all the BN structues in W .

Definition 4.3: The Belief Base induced by a p-function is given by top of a

p-function, i.e. K = {αji : P (αji) = 1}.
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The top of the p-function can be relaxed to be bounded below by a value less

than one (1) without loss of generality. For instance the top of the p-function can be

relaxed to be bounded below by 0.95 such that the Belief Base K is induced from the

p-function as follows; K = {αji : Pt(αji) ≥ 0.95}

A rational Belief Change operator should therefore revise and/or update the Belief

Base K with αji such that the principle of information economy is adhered to. This

work is therefore an effort to define a Belief Change Model for structure change in

Bayesian Networks that builds on the formal bonds that the structure change problem

has with the Belief Change problem in classical logic. In the next subsection, we define

the postulates that such a model should satisfy.

4.4.1 Postulates for Unified Belief Change in Bayesian Network Struc-

tures

This thesis postulates that the p-function over all possible BN structures holds all

the information needed for rational Belief Change in the BN structure, and the Belief

Base induced by the p-function captures the current beliefs about the world. The goal

in this section is therefore to formulate the postulate for rational Belief Change of

structure in Bayesian networks. The underlying principle for rational Belief Change

is that the Belief Change operator should return as much as possible from the old

beliefs.

This is generally referred to as the principle of informational economy or minimal

change. This Thesis assumes that for every p-function, P , and its corresponding

Belief Base, K, there is a unique p-function, P /
A and a corresponding Belief Base K/

A

representing the results of rational Belief Change on the Belief State by A using a

given Belief Change operator, /.

Boutilier (1995) modified the postulates for revision of p-functions proposed by

Gardenfors (1988) to give a modified set of postulates that a probabilistic revision

function should satisfy. We further modified the postulates in order for them not
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to be invalid for a unified Belief Change Model. Below is a set of Belief Revision

postulates we defined for the Unified Belief Change Model:

(P1) P /
A is a consistent p-function

(P2) P /
A(A) = 1

(P3) If the domain is static and P (A) > 0, then P /
A = P (.|A)

(P4) If P /
A(B) > 0, then P /

A∧B = P /
A(.|B)

Postulate P1, requires that an output of a Belief Change on a consistent p-function

by a proposition should also be a p-function. This satisfies the principle of consistency

maintenance. P2 guarantees that if the p-function is revised with respect to proposi-

tion A, the Belief Base induced by the p-function should accept A (i.e A should be in

the top of the resulting p-function). This is generally known as the success postulate.

P3 ensures that if the domain is static no update will be effected by the operator.

Thus, the Belief Change operator will only effect revision.

4.5 Deriving the Unified Model for Belief Change in Bayesian Networks

The problem of Belief Change in Bayesian Network Structure is in this thesis

presented as dynamic process that can be modelled using a Dynamic Bayesian Net-

work. This is not a far-fetched hypothesis, since Bayesian modelling have over the

years been used as a mechanism for Bayesian Network Structure Learning (Chicker-

ing, Heckerman, & Meek, 1997; Eggeling et al., 2019; Friedman & Koller, 2003; Han

et al., 2017). The hypothesised dynamic Bayesian Network is taken to be the Be-

lief Change Meta-Model that will be used to conceptualise the Belief Change Model

developed in this thesis.

At any given point in time, the actual true network structure is unobservable,

hence it is not known with certainty, so a distribution over all the possible structures

is maintained. Such a distribution is known as the Belief State in Belief Change
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literature (Boutilier, 1995). This thesis uses Pt(B
s) to denote such a distribution at

a given time t. The Belief Base, or set of sentences accepted is an abstraction over

the p-function given by the top of the p-function (Boutilier, 1995).

Definition 4.4: The Belief Base induced by a p-function is given by top of a

p-function, i.e. K = {A : Pt(A) = 1}, where A is some proposition

According to Gardenfors (1988), Lindstrom and Rabinowicz (1989), and Boutilier

(1995) non-beliefs can be further discriminated to give different degrees to each one of

them. The set of non-beliefs consists of all A : 0 < P (A) < 1. These are necessary be-

cause they hold the information necessary for the Belief Change Operator. Boutilier

(1998) argued that system dynamics can be characterised by two families of proba-

bility distributions. These are event probabilities and outcome probabilities. Event

probabilities, Pt(e|Bs), model the likelihood of a given event,e , occurring given that

Bs is the actual state (network structure) of the world. The outcome probabilities,

Pt(B
s′|Bs, e), model the probability of a state (network structure), resulting from oc-

currence of event,e , in state Bs. The unrolled Dynamic Bayesian Network in Figure

4.3 models the regularities we postulated for structure change in Bayesian networks

that defines the proposed Belief Change Meta-Model. The event vocabulary for BN

structure change abstractly consists of the following event classes: (i) addition of an

edge; (ii) deletion of an edge, and (iii) reversal of an edge.

Figure 4.3.: A Dynamic Bayesian Network for Modelling Structure evolution in a Bayesian

Network
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The Bs
t s in the unrolled Dynamic Bayesian network in Figure 4.3 represent the

actual states (network structures) at a given time t. The ets represent events that can

possibly occur given that Bs
t is the true state at time t. Dt represents the data emitted

from the true state/structure at time t. The events in this case will be removal of

an edge, addition of an edge, and reversal of an edge. In the DBN in Figure 4.3,

both the states and the events are unobservable. This is owing to the fact that in

learning Probabilistic graphical models, we cannot directly observe addition, deletion,

or reversal of edges. These events can only be inferred based on the observable data,

Dt, emitted from the current structure, Bs
t .

On the basis of DBN in Figure 4.3 and the definition of the Unified Belief Change

model (Boutilier, 1998) for qualitative Belief Change, this research defines an event-

based model for rational Belief Change of the structure of a Bayesian Network. Events

are defined in terms of the three (3) operators for introducing local variations to an

existing Bayesian Network, insertion of an edge, removal of an edge, and reversal of

an edge, and the null event. An event is defined as follows:

Definition 4.5: An event, e, is a possible local variation of a network struc-

ture that maps each structure into a probability distribution over possible BN

structures, e : Bs → (Bs → P ). We use P (Bs′|Bs, e) to denote this distribution.

Since these events are unobservable and there is no certainty on which event

caused the observation, an event probability distribution associated with each network

structure, is defined as follows;

Definition 4.6: An event probability function, µ, maps each Network Struc-

ture into a probability distribution over events, µ : Bs → (E → P ), where

E → P captures the probability distribution of events likely to occur in Belief

State. P (e|Bs) is used to denote the event probability distribution defined for a

given network structure Bs.

For sure events, P (e|Bs) = 1 and P (e|Bs) = 0 for impossible events. Finally

we define the Unified Belief Change model for rational Belief Change of structure in

Bayesian Networks as follows;
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Definition 4.7: A Unified Belief Change Model for Bayesian Network structures

has the form M = 〈W , P, E, µ,C〉; where W is the set of possible Network struc-

tures, P is a probability distribution (Belief State) over possible Bayesian Network

structures, E is a set of events (local variation) that can occur in each Bayesian Net-

work structure, µ is a set of probability distribution over events that can occur given

Bayesian Network structure and C is the Belief Change Operator.

Definition 4.6 defines an Epistemic Space over which the Epistemic State is de-

fined. The Epistemic State consists of two groups of distributions, the Belief State,P

, and the event distributions ,µ. Belief Change is effected on these two sets of distri-

butions and the result of the Belief Change is also set of these distributions.

Boutilier (1998) postulated that a Unified Belief Change Model proceeds in two

phases. First, the agent updates its Belief State, and second it revises this Belief

State by the observation. In the following two subsections, we are going to discuss

the conceptualisation of these two phases for Belief Change in Bayesian Networks.

4.5.1 Updating the Belief State

Now let’s assume that the system dynamics have moved one timestep forward

from time t to t+ 1. Assuming the dependencies modelled in Figure 4.3 and making

a Markov assumption of order 1, the joint probability distribution at time t+ 1 over

the random variable Bs′, representing the state (network structure) at time t+ 1, the

state at time t, and e the event that can occur at time t, is given by Equation (4.5);

Pt+1(Bs′, Bs, e) = Pt(B
s′|Bs, e)Pt(e|Bs)Pt(Bs) (4.5)

The Belief State (or probability distribution over states Bs ) at time t + 1 is the

marginal probability of Bs′ obtained by marginalising out the latent variables Bs and

e, giving Equation (4.6).

Pt+1(Bs′) =
∑
Bs∈W

∑
e∈Es

Pt(B
s′|Bs, e)Pt(e|Bs)Pt(Bs) (4.6)
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where W is a set of all possible states/network structures, Es is the set of all events

that can occur in state Bs.

Equation (4.6) can also be derived either by analogy from Boutilier’s qualitative

Unified Belief Change Model or from the theory on Partially Observable Markov De-

cision Processes (POMDPs). The next two Subsections are going to derive Equation

(4.6) from both the above mentioned perspectives.

However, a closer look at Equation (4.6) reveals that there is only one event that

can occur in state Bs resulting in state Bs′. This implies that Pt(B
s′|Bs, e) = 0 for

all e that does not result in Bs′ and Pt(B
s′|Bs, e) = 1 otherwise. If we define the

null event as the event that no edge insertion, removal or reversal happens and as a

result the network structure does not change (i.e. Bs′ = Bs ), Equation (4.6) can be

rewritten as follows;

Pt+1(Bs′) =
∑
Bs∈W

∑
e∈Es

I(Bs′|Bs, e)Pt(e|Bs)Pt(Bs) (4.7)

where Es is the set of all events that can occur in state Bs, including the null event,

and I(Bs′|Bs, e) is an indicator function which is equal to one(1), if occurrence of

event e in state Bs results in state Bs′ and zero (0) otherwise. Equation (4.7) is

important for efficient implementation of the update operator. Computation of some

parameters for events that do not result in legal states can be skipped.

4.5.1.1 Validating the Update Model by Analogy to the Unified Qualita-

tive Update Model

The unified Belief Change Model as proposed by Boutilier (1995), assumes that

system dynamics are governed by two families of probability functions. These are

event probabilities and outcome probabilities. Events are assumed to provide an

impetus for change and the plausibility of a Belief Change is determined by the

plausibility of the events that can cause the change.

An event e, maps each world into a partial ranking over worlds, e : W → (W →

N), where N is a set of natural numbers. This ranking gives a qualitative probability
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distribution over worlds, which is denoted by κwe. Intuitively κw,e(v) describes the

plausibility that the world v results when event e occurs at world w. The most likely

outcomes are given the rank zero (0). v is an impossible outcome of event e occurring

in world w if κw,e(v) =∞. The expression κw,e(v) should be equal to zero for at least

one event. A null event is defined to cater for static domains. In static domains, for

a null event, n, κwn(v) = 0 for w = v and κwe(v) = ∞ for any w 6= v. A null event

thus ensures that the world does not change. For any given world an event ordering

to capture the probability distribution of events is defined as follows.

An event ordering µ maps each world into a partial ranking over events, E,

µ : W → (E → N). This gives a qualitative pausability distribution of possible

events in a given world denoted by κw. κw(e) captures the plausibility of the

occurrence of an event e in world w. An event e is impossible if κw(e) =∞.

The Belief State of the system is reflected in the ranking of the worlds (states) κ.

κ(w) denotes the qualitative plausibility distribution over all possible states. κ(w) =

∞ means the world w is impossible.

The generalized update model is defined as a tuple,M = (W,κ,E, µ), where W

is a set of possible worlds, κ is a ranking (plausibility distribution) over worlds

(κ is also known as the Belief State of the system), E is a set of possible events

defined over given states, and µ is the event ordering (plausibility distribution of

events over given worlds).

Boutilier (1995) postulated that the plausibility of a transition from w to v after

occurrence of event e depends on the plausibility of w, the likelihood that event e

occurred and the likelihood of the outcome v given event e occurred in state w; i.e

κ(w
e−→ v) = κw,e(v) + κw(e) + κ(w) (4.8)

The updated ranking (qualitative probability distribution), κ� is given by (Boutilier,

1998):

κ�(v) = min
w∈W,e∈E

κw,e(v) + κw(e) + κ(w) (4.9)
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Addition in qualitative probability theory is equivalent to multiplication in quan-

titative probability theory and minimisation is equivalent to addition in quantitative

probability distributions (Friedman and Halpen, 1996). This implies that minw∈W,e∈E,

is equivalent to
∑

s∈S,
∑

e∈E in quantitative probability theory, and after replacing the

ranks with probabilities, the quantitative analogy of the expression κw,e(v) +κw(e) +

κ(w) is given by,
∑

w∈W
∑

e∈E P (v|w, e)P (e|w)P (w). As a result the equivalent of

Equation (4.9) in quantitative probability theory is
∑

w∈W
∑

e∈E P (v|w, e)P (e|w)P (w)

with the ranks replaced with probabilities. This is the updated marginal distribution

of the states analogous to Equation (4.6).

4.5.1.2 Validating the Update model from the Theory on POMDP

A Partially Observable Markov Decision Processes (POMDP) models an agent’s

decision process in which it is assumed that the system dynamics are determined

by a Markov Decision Process (MDP). The agent performs some actions that can

change the state of the world, but it cannot directly observe the underlying state.

The agent only maintains a probability distribution over all possible states, called a

Belief State and a mechanism/operator for updating the Belief State on the basis of

the observations emitted from the latent state.

Formally a POMDP as a tuple {S,A, Tr,R,Ω, O} (Shani, 2007), where;

• S, is a set of possible states,

• A, is a set of actions that an agent can take,

• Tr, defines, a transition probability P (s′|s, a). s′ is the resulting state after an

agent perform action a in state s.

• R, defines the expected reward for performing action a in state s,

• Ω, is a set of observations
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• O, is the probability that an agent will observe after executing a, reaching state

s′,p(o′|s′, a)

At each timestep the world is in some unobserved state s. The agent selects an action

a, and the world transitions to an unobserved state s′. This transition only depends

on the state s and the action a. Convention in POMDP defines b(s) to be probability

distribution of being in a particular state s. At each time stamp the Belief State is

updated to a new Belief State b′(s′) on the basis of the evidence as follows (J. D.

Williams & Young, 2007):

b′(s′) = P (s′|o′, a, b)

=
P (o′|s′, a, b)P (s′|a, b)

P (o′|a, b)

=
P (o′|s′, a)

∑
s∈S P (s′|a, b, s)P (s|a, b)
P (o′|a, b)

=
P (o′|s′, a)

∑
s∈S P (s′|a, s)b(s)

P (o′|a, b)

(4.10)

The numerator of Equation (4.10) is the product of the observation function and the

probability distribution of being in a given state after moving one timestep forward.

The denominator is independent of s, and can be regarded as the normalisation

constant.

In the Belief Change process for Bayesian Network structures modelled in Figure

3, unobservable events (instead of observable agent actions in classical POMDP) that

result from the system dynamics provide an impetus for change. Agents can only

make epistemic actions in order revise and update their beliefs about the domain.

The function,
∑

s∈S P (s′|a, s)b(s) is the one that deals with Belief Update and it

gives the probability distribution of being in a given state after moving one timestep

forward. Replacing the agent’s actions with events, this function results in Equation

(4.11):

∑
s∈S

P (s′|e, s)b(s) (4.11)
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However, events, unlike actions in the case of POMDP are unobservable. Since

e, is a hidden/latent variable, we can replace e by its distribution in Equation (4.11)

and marginalise it out as follows:

∑
s∈S

P (s′|e, s)b(s) =
∑
s∈S

∑
e∈E

P (s′|e, s)P (s)P (e|s) (4.12)

Since b(s) is the probability distribution over possible states/worlds at the previous

timestep, it can be replaced by P (Bs). To capture the concept of change in BN

structure, P (s′|e, s) is replaced with P (Bs′|B′, e), and P (e|s) with P (e|Bs). Equation

(4.12) can then be restated as follows:

∑
Bs∈W

P (Bs′|Bs, e)P (Bs) =
∑
Bs∈W

∑
e∈E

P (Bs′|Bs, e)P (e|Bs)P (Bs) (4.13)

Equation (4.13) gives the probability distribution of being in a given state after

moving one timestep forward and is the same as Equation (4.6).

4.5.2 Revising the Belief State

The second phase of the Belief Change process in dynamic domains should then

cater for revision of the updated Belief State based on the evidence D. This is done by

providing the best possible explanation for what has been observed. In the qualitative

Belief Change Model, this is done by finding high ranking states among those that are

supported by the evidence and can possibly have resulted from some event occurring

in some likely world/state. This can be interpreted to mean that the revised Belief

State should give higher rankings to states that are supported by the evidence D.

States that are not supported by data, even though they may have ranked high after

update they are not considered. This is in principle conditionalisation, and from

a quantitative perspective the resulting Belief State after revision is given by the

following equation:
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PDt+1(Bs′) = Pt+1(Bs′|D) =
Pt+1(D|Bs′)Pt+1(B)

Pt+1(D)

=
Pt+1(D|Bs′)Pt+1(Bs′)∑
Bs′∈W P (D|Bs′)Pt+1(Bs′)

=
Pt+1(D|Bs′)

∑
Bs∈W

∑
e∈Es Pt(B

s′|Bs, e)P (e|Bs)Pt(Bs)∑
Bs′∈W Pt+1(D|Bs′)

∑
Bs∈W

∑
e∈Es Pt(Bs′|Bs, e)P (e|Bs)Pt(Bs)

(4.14)

Equation (4.14) is equivalent to Equation (4.10) except for the fact that in Equa-

tion(4.14) observations are independent of the events given the hidden state and that

events are unobservable (see the DBN in Figure 4.1).

4.6 The Unified Belief Change Model and the Revision function Postu-

lates

This Section presents the substantiation that the proposed Unified Belief Change

Model satisfies the postulates discussed in Section 4.3. The postulates are listed below

for easy reference:

(P1) If A is satisfiable, then P /
A is a (consistent) p-function.

(P2) If A is satisfiable, then P /
A(A) = 1

(P3) If the domain is static and P (A) > 0, then P /
A = P (.|A)

(P4) If P /
A(B) > 0, then P /

A∧B = P /
A(.|B)

Proposition 4.1: If A is satisfiable, then P /
A is a (consistent) p-function

Proof of Proposition 4.1: This follows from the derivation of the p-function

resulting from our Belief Change Model. The resulting function is a consistent p-

function.

Proposition 4.2: if A is satisfiable then P /
A(A) = 1

Proof of Proposition 4.2: Let P ′ = Pt+1(.|A) be the new distribution after

Belief Change by A. If A is satisfiable, then P ′(A|Bs
i ) = 1, since if A is satisfiable, it

implies that A ∈ Bs
i , ∀Bs

i ∈ W :

P ′(A|Bsi ) =
P ′(Bsi |A)P ′(A)

P ′(Bsi )
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After rearranging the terms, P ′(A) is given by the following equation,

P ′(A) =
P ′(A|Bsi )P ′(Bsi )

P ′(Bsi |A)

But P ′(A|Bs
i ) = 1. This gives

P ′(A) =
P ′(Bsi )

P ′(Bsi |A)

P ′(A)P ′(Bsi |A) = P ′(Bsi )

Taking summations of both sides

∑
Bs

i ∈W
P ′(A)P ′(Bsi |A) =

∑
Bs

i ∈W
P ′(Bsi )

P ′(A)
∑
Bs

i ∈W
P ′(Bsi |A) =

∑
Bs

i ∈W
P ′(Bsi )

P ′(A) =

∑
Bs

i ∈W P ′(Bsi )∑
Bs

i ∈W P ′(Bsi |A)

The terms
∑

Bs
i ∈W

P ′(Bs
i ) and

∑
Bs

i ∈W
P ′(Bs

i |A) are both equal to one (1), since

they are summing probabilities over the whole sample space. This results in

P ′(A) =
1

1
= 1

Proposition 4.3: If P (A) > 0 and the domain is assumed static, then P /
A =

P (.|A).

Proof of Proposition 4.3: This follows from proposition 4.2. If the domain is

static, Pt+1 = Pt. This implies that P /
A = Pt+1(.|A) = Pt(.|A). Thus P /

A = P (.|A).

Proposition 4.4: if P /
A(B) > 0 then P /

A∧B = P /
A(.|B)
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Proof of Proposition 4.4: The Belief Change Operator starts by updating the

Belief State, based on the system dynamics and then revising it by an observation

that best explains what could have happened. Thus, assuming the new distribution

after update Pt+1 is P ′, then P /
a (.|B) can be rewritten as P ′(.|(B|A)).

Supposing C is some proposition,

P ′(C|(B|A)) = P ′((B|A)|C)P ′(C)
P ′(B|A)

After rewritting the above equations as a product of its components the following is

obtained,

P (C|(B|A)) = P ′((B|A)|C)
1

P ′(B|A)
P ′(C)

=
P ′(B ∧A|C)

P ′(A|C)

P ′(A)

P ′(B ∧A)
P ′(C)

= P ′(B ∧A|C)
P ′(1)

P ′(A|C)

P ′(A)

P ′(B ∧A)
P ′(C)

=
P ′(B ∧A ∧ C)

P ′(C)

P ′(c)

P ′(A ∧ C)

P ′(A)

P ′(B ∧A)
P ′(C)

Making a Markov assumption of order 1 based on the Markov model in Figure (4.3)

and the distribution P /
A(.|B), it is concluded that proposition C is independent of the

Belief Change by proposition A given revision by B. This implies that P ′(A ∧ C) =

P ′(C)P ′(A). Hence

P ′(C|(B|A)) =
P ′(A ∧B ∧ C)

P ′(B ∧A)

=
P ′(A ∧B ∧ C)

P ′(B ∧A)

P ′(C)

P ′(C)

=
P ′((A ∧B) ∧ C)

P ′(C)

P ′(C)

P ′(B ∧A)

=
P ′((A ∧B)|C)

1

P ′(C)

P ′(B ∧A)

=
P ′((A ∧B)|C)P (C)

P ′(B ∧A)

= P ′(C|A ∧B)

The distribution, P ′(.|A ∧ B) = Pt+1(.|A ∧ B), can be rewritten in our Belief

Change notation as P /
A∧B(.)
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On the basis of the foregoing propositions and their proofs, we therefore conclude

that the Belief Change operator defined in this thesis satisfies the postulates of a

probabilistic revision function defined in (Boutilier, 1998).

4.7 Discussion and conclusions

This chapter proposed a Belief Change model for Bayesian Networks for knowledge

representation in Dynamic domains. The Model was derived based on a Belief Change

meta-model that this thesis postulated to be the foundational model for Belief Change

in dynamic domains. The Belief change meta-model was informed by the event-

based semantics for Belief Change proposed by Boutilier (1998). The derived Unified

Belief Change Model was formally validated by analogy using the Qualitative Belief

Change Model for Dynamic environments, and theory of Partially Observable Markov

Decision Processes (POMDP). The semantics of the derived model were found to

be very similar to the semantics of POMDPs, except for the fact that the derived

model has unobservable events, instead of ontic agent action, providing an impetus

for change in the domain. It was also proven that the proposed Belief Change Model

meets the postulates for revision of p-functions.

The general approach to Belief Change in Bayesian Networks is similar to the

approaches that have emanated from the work on Sequential Update of Bayesian

Networks (which is also referred to as incremental Learning of Bayesian Networks in

some literature) (Friedman & Goldszmidt, 1997; Lam & Bacchus, 1994; Yu, 2019;

Yue et al., 2015). Amongst these works. the work by Friedman and Goldszmidt 1997

is much closer to the approach to Belief Change in Bayesian Networks proposed in

this thesis. This is in the sense that after every structure learning operation, the

model keeps a set of high-scoring Bayesian Network candidates, that serves as the

epistemic state for the next iteration of Bayesian structure learning. When new data

is observed the structure learning process searches within the set of the high-scoring

BN structures for a structure that best explains the data. However, although these
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solutions claim to be addressing changes necessitated by both errors in the initial

models and changes in the domain, only cater for Belief Revision when they are

analysed from a Belief Change perspective.
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5. UNIFIED BELIEF CHANGE OPERATOR FOR

BAYESIAN NETWORKS (UBCOBAN )

5.1 Introduction

In this chapter, an instance of a belief change operator induced by the model

presented in Chapter 4 is defined. This will be followed by an illustration of how the

operator works on a synthetic toy example.

5.2 The Unified Belief Change Operator for Bayesian Networks (UB-

COBaN )

Given the Unified belief change model presented in Chapter 4, quite a number of

belief change operators can be induced from it. This section defines one such operator

and how the parameters for the operator will be determined.

5.2.1 Definition of the UBCOBaN Operator

Proposition 5.1: A rational belief change operator for Bayesian Network struc-

tures first updates the belief state (probability distribution over states) on the basis of

the current probability distribution over the possible network structures, event prob-

ability distributions and likely transitions, and then revise the updated structure by

conditioning on the new evidence observed.

Proof of Proposition 5.1. The proof follows directly from the conceptualisation

of the belief change model in Section 4.4;

PDt+1(Bs′) =
Pt+1(D|Bs′)

∑
Bs∈W

∑
e∈Es Pt(B

s′|Bs, e)P (e|Bs)Pt(Bs)∑
Bs′∈W Pt+1(D|Bs′)Pt+1(Bs′)

(5.1)
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The expression
∑

Bs∈W
∑

e∈Es Pt(B
s′|Bs, e)P (e|Bs)Pt(B

s), captures all the informa-

tion required for updating the Bayesian Network structure. This can be computed in-

dependent of the observations, D. Hence the belief change algorithm can be designed

by first computing this function, which updates the belief state and then revising the

updated belief state through conditioning on the evidence using Equation (5.1).

Proposition 5.2: The operator defined in Proposition 5.1 satisfies both belief

update and revision.

Proof of Proposition 5.2. If the domain is static, the only possible event is

the null event, n,the event that nothing happens/changes. This event is sure in a

static domain, that is P (n|Bs) = 1. The probability of the structure changing from

one state to another given a null event has occurred is zero for all Bs′ = Bs and

one (1) for all Bs′ 6= Bs. Substituting these probabilities in Equation (4.6) gives

Pt+1(B
s′) = Pt(B

s).

Pt+1(B
s′) = Pt(B

s) implies that the belief state at time t is the same as the one

at time t+ 1. This ensures that our belief change operator does not effect update in

domains that are assumed static. Update will only be effected in dynamic domains.

However, as shown in Equation (4.7) the nature of the belief change operator

defined in this paper dictates that P (Bs′|Bs, e) assigns a probability of one (1) to the

only event that results from event e occurring in state and zero to all the other states.

For Belief Revision, the Bayesian based Search-and-Score structure learning ap-

proach is used. The DB metric defined in Theorem 4.1 (see Equation (5.2)) or any

of its extensions can be used as the scoring metric in searching for the structure that

best fits the data. (Heckerman, Geiger, & Chickering, 1995).

P (D,Bs) = P (Bs)
n∏
i=1

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)
(5.2)
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5.2.2 Epistemic States, Belief Bases, and Computation of Parameters

The number of possible structures is usually very large in practice, making the

task of effecting the update operator computationally expensive owing to the fact

that it will need computation of structure priors, Pt(B
s), and event probabilities,

Pt(e|Bs), for all the possible BN structures. The size of these parameters grows

exponentially with the size of the Bayesian Network. Taking inspiration from Madigan

and Raftery (1994), we take the standard approach of scientific investigation. In a

scientific investigation, models are compared on the basis of how well they predict

the observations. Models that predict the observation less well than their competitors

are discarded. Against this background, this thesis makes the proposal that all BN

structures that fit the data less well than their competitors should be discarded.

Equation (5.3) defines the set of structures that will be included in the belief state:

W = {Bsi :
maxk{P (Bsk|D)}

P (Bsi |D)
≤ c} (5.3)

where c is some constant and k is an index over all the possible BN Structures. As

highlighted in (Madigan & Raftery, 1994) the value of c depends on the context. The

scores of the BN structures inW are then used to compute a probability distribution

(Pt(B
s)) over all structures in W . The set W does not give a complete epistemic

state because a lot of BN structures whose combined score is quite significant would

have been discarded. However, the assumption in this approach is, every edge αji

that is entrenched well enough in the epistemic state should be in at least one of the

high scoring networks. Thus, by having W large enough the edge weights can be

estimated from the BN structures in W using Equation (5.4);

P (xj → xi|D) =
∑

Bs
k:B

s
k�(xj→xi)

P (Bsk|D) (5.4)

where xj → xi is a new notation for the edge/proposition αji introduced for convenient

representation of an edge from Xj to Xi.

Assuming that for a distinct pairs of variables Xj and Xi, the event of Xj having

some set of variables as its parents is independent of the event Xi having some set of
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parents, the probability of a BN structure is given by the product of the probabilities

of the parent structures encoded in the BN structure, as shown in Equation (5.5)

(Buntine, 1991; Cooper & Herskovits, 1992).

P (Bs) =
∏

16i6n

P (πsi → xi) (5.5)

Equation (5.5) makes it possible to compute a complete belief state over all the

possible consistent BN structures including those which were discarded from W by

Equation (5.3). This implies that Equation (5.2) can be rewritten as Equation (5.6)

P (D,Bs) =

n∏
i=1

P (πsi → xi)

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

ri∏
k=1

Γ(Nijk′ +Nijk)

Γ(N ′
ijk)

(5.6)

Assuming that the event xm being a parent of xi is independent of the event xn

being a parent of xi, the probabilities of parent configurations can be computed for

all the variables using Equation (5.7) (Madigan & Raftery, 1994)

P (πsi → xi) =
∏

xm∈πs
i

P (xm → xi)
∏

xm /∈πs
i

(1− P (xm → xi)) (5.7)

The P (xm → xi) probabilities to be used in Equation (5.7) should be derived from

the updated belief state using Equation (5.8).

P (xm → xi) =
∑

Bs
k:B

s
k�(xm→xi)

P (Bsk) (5.8)

The event conditional probability distributions are computed from the edge weights

using the Algorithm 5.1 as follows;

For each of the structures in W , list one-step transitions, which can be either an

edge addition, an edge removal, an edge reversal or null event, from one BN structure

to some other structure in W . The null event is given a weight of one (1), which is

the highest weight possible for any event. The event weight for addition of an edge

is taken to be the weight of the edge to be added denoted by edgeWeight(e.edge).

The weight of an edge removal event is given by, 1 − (edgeWeight(e.edge). For an

edge reversal event, we assume an edge reversal to be a combination of two inde-

pendent events, an edge removal and an edge insertion. The weight for an edge
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reversal was taken as a product of the weights of an edge removal and an edge

addition, (1 − (edgeWeight(e.edge))(edgeWeight(
←−−−
e.edge)). The edge

←−−−
e.edge is the

reverse of the edge e.edge. For each structure, the event conditional probability

distribution,Pt(e|w), was calculated as normalised weights of all the possible events.

Once the event conditional probability distributions, and the probability distribution

over the significantly entrenched Bayesian Network structures are obtained, Belief

Update as defined by the model in Equation (4.6) is effected.

Algorithm 5.1 Algorithm for computing the Conditional Event Probability Distri-

butions
1: Input:W

2: Output:Conditional Event Probability Distributions for each Bs
i in W

3: procedure ComputeEventProbDistrs

4: for each Bs
i ∈ W do

5: list ← list all events that maps Bs
i to another BN structure in W , their

event type and edge weights

6: for e ∈ Es do

7: if e.eventType == ”addition” then

8: e.eventWeight = edgeWeight(e.edge)

9: else if e.eventType == ”removal” then

10: e.eventWeight = 1− edgeWeight(e.edge)

11: else if e.eventType == ”reversal” then

12: e.eventWeight = (1−edgeWeight(e.edge))∗(edgeWeight(
←−−−
e.edge))

13: else if e.eventType == ”null” then

14: e.eventWeight = 1

15: sumEventWeights =
∑m

j=1 ej.eventWeight : Bs
i

ej−→ Bs
k, ∀Bs

k ∈ W

16: for e ∈ Es do

17: e.conditionalProbability = e.eventWeight/sumEventWeights
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5.3 A Toy Example to illustrate the Model

This section presents a demostration of how the Belief Change Operator defined in

Section 5.2 works. The toy example introduced in Chapter 4 will be used. The data

used in this section was generated by the researcher with the sole aim of illustrating

how the UBCOBaN operator works. Hence this Chapter does not seek to validate

any claims about the model and the operator, except to show how the operator works.

Suppose a probability distribution over the possible BN structures in W (that fit

the data well enough) at time t is as shown in Figure 5.1. Given this distribution, the

edges’ weights can be computed using Equation (5.8). The edge weights are shown

in Table 5.1.

Table 5.1.: Edge weights computed from Figure 5.1

Edge Weight calculation Weight

RA(p)→ Acpted(p, j) 0.5+0.25+0.15+0.03+0.02 0.95

RA(p)→ GP (p) 0.5+0.05+0.03+0.02 0.35

GP (p)→ Acpted(p, j) 0.5+0.25+0.15+0.05 0.95

DBR(j)→ Acpted(p, j) 0.5+0.25+0.15+0.05+0.03+0.02 1

GP (p)→ RA(p) 0.15 0.15

Acpted(p, j)→ GP (p) 0.02 0.02

The edge weights in Table (5.1) are a reflection of how much the edges (i.e. a

sentence) are entrenched in the epistemic state. An edge with a weight of one (1)

(e.g. DBR(j) → Acpted(p, j)) is maximally entrenched and hence it is in the Belief

Base. Without loss of generality, if a Belief Base, K, is defined as the top of the

p-function as follows; K = A : Pt(A) ≥ 0.95, the Belief Base resulting from Table 1

is; K = {RA(p) → Acpted(p, j), GP (p) → Acpted(p, j), DBR(j) → Acpted(p, j)}.

This represents the theory that acceptance of a paper in a journal depends on the

reputation of the author(s) of the paper, quality of the paper, and whether the journal

uses double-blind review.
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Figure 5.1.: BN structures in the set of structures that fit the data well enough and their

probability distributions.

5.3.1 Updating the Epistemic State

As discussed in Section 5.2, the operator starts with the update function and then

do revision on the updated epistemic state. In order to do the update operation,

the operator needs model parameters for update. These are computed using the
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algorithm in Algorithm 1. Table (5.2) shows the event probability distributions for

each BN structure.

Using Equation (4.6) and skipping all computations with P (Bs′|Bs, e) = 0 and

their corresponding P (e|Bs) the new updated distribution of the BN structures inW

at time t+1 is shown in Table (5.3). The table shows the update function redistribute

the probability mass to favour BN structures that are more likely to result from non-

null event transitions with higher weights. In fact, it takes the probability mass from

BN structures which are more likely to experience transitions and distributes the

probability mass to the BN structures that results from these transitions. In Table

(5.3), as a results of the fact that transitions to Bs
1 from all the other BN structures

have higher probabilities, the probability mass is shifted from the other BN structures

to Bs
1.

Table 5.2.: Event probability distributions for each Structure in W

BN Structure Event Resultant State Event Weight Event Probabilities

Bs
1

Null event Bs
1 1 10000/18485

Rem(RA(p)→ GP (p)) Bs
2 1-0.35 = 0.65 6500/18485

Rev(RA(p)→ GP (p)) Bs
3 (1-0.3)(0.15)=0.0975 975/18485

Rem(RA(p)→ Acpted(p, j)) Bs
4 1-.0.95 = 0.05 50/18485

Rem(GP (p)→ Acpted(p, j)) Bs
5 1-0.95 = 0.05 50/18485

Rev(GP (p)→ Acpted(p, j)) Bs
6 (1-0.95)(0.02) = 0.001 1/18485

Bs
2

Add(RA(p)→ GP (p)) Bs
s 0.35 35/150

Null event Bs
2 1 100/150

Add(GP (p)→ RA(p)) Bs
3 0.15 15/150

Bs
3

Rev(GP (p)→ RA(p)) Bs
1 (1-0.15)(0.35)=0.2975 2975/21475

Rem(GP (p)→ RA(p)) Bs
2 1-0.15 = 0.85 8500/21475

Null event Bs
3 1 10000/21475

Bs
4

Add(RA(p)→ Acpted(p, j)) Bs
1 0.95 95/195

Null event Bs
4 1 100/195

Bs
5

Add(GP (p)→ Acpted(p, j)) B1
1 0.95 95/197

Null event Bs
5 1 100/195

Add(Acped(p, j)→ GP (p)) Bs
6 0.02 2/195

Bs
6

Rev(Acped(p, j)→ GP (p)) Bs
1 (1-0.02)(0.95) = 0.931 931/2911

Rem(Acped(p, j)→ GP (p)) Bs
5 1-0.02 = 0.98 980/2911

Null event Bs
6 1 1000/2911
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The sum of the probabilities in Table (5.3) sum up to one (1) confirming that the

update function results in a consistent p-function. The updated edge weights in Table

(5.4) were computed from the updated Belief State in Table (5.3) using Equation

(5.7). Table (5.4) shows that after update the weights of the edges appearing in

higher scoring BN structures get more entrenched and those appearing in low scoring

BN structures get less entrenched.

Table 5.3.: Updated belief state

BN Structure Pt(Bs
i ) Calculation Pt+1(Bs

i )

Bs
1 0.25 (0.25)(10000/18485)+0.5(35/150) +· · ·+ 0.02(931/2911) 0.31791

Bs
2 0.5 (0.25)(6500/18485)+(0.5)(100/150) + 0.15(2500/21475) 0.48061

Bs
3 0.15 (0.25)(975/18485)+(0.5)(15/150)+(0.15)(10000/21475) 0.13304

Bs
3 0.05 (0.25)(50/18485)+(0.05)(100/195) 0.03241

Bs
5 0.03 (0.25)(50/18485)+(0.03)(100/197)+(0.02)(2/197) 0.02872

Bs
6 0.02 0.25(1/18485)+(0.03)(2/197)+(0.02)(1000/2911) 0.00731

Table 5.4.: Updated Edge Weights

Edge Weight calculation Weight

RA(p)→ Acpted(p, j) 0.31791+0.48061+0.13304+0.02872+0.00731 0.9676

RA(p)→ GP (p) 0.31791+0.03241+0.02872+0.00731 0.3864

GP (p)→ Acpted(p, j) 0.31791+0.48061+ 0.13304+0.03241 0.964

DBR(j)→ Acpted(p, j) 0.31791+0.48061+0.13304+0.03241+0.02872+0.00731 1

GP (p)→ RA(p) 0.13304 0.133

Acpted(p, j)→ GP (p) 0.00731 0.0073

Using the edges in Table (5.4) and their weights, we can generate all the parent

structure configurations with non-zero probabilities. The resulting parent structure

configurations and their distributions for each node are shown in Table (5.5). The

fact that the sum of the probabilities of the parent structures for each node sum

to one (1) serves to confirm the correctness of Equation (5.6). For the variable

Acpted(P, J), the parent structure configurations, {}, {RA}, {GP}, {RA,GP} were

omitted since they give a probability of zero. This was a result of the fact that the
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weight of DBR(j)→ Acpted(p, j) is one (1) and any parent configuration which does

not have DBR(j) will have a probability of zero. This is very logical from a Be-

lief Change perspective. Any worlds (BN structures) that contradict the proposition

DBR(j) → Acpted(p, j) should not be accepted after belief update since the propo-

sition is maximally believed. Contradictions to this proposition can be accepted only

after revision if data inconsistent with the proposition is observed.

Table 5.5.: Parent configurations for each node in the domain and their probabilities. *for

Acpted(P,J) parent configurations, {}, {RA}, {GP}, {RA, GP} were omitted since they

give a probability of zero

Variables

RA GP DBR Acpted(P,J)*

πi P (πi) πi P (πi) πi P (πi) πi P (πi)

Parent Structure

None 0.86696 None 0.60916 None 1 DBR 0.00117

GP 0.13304 Acc 0.00449 RA,DBR 0.03487

RA 0.38353 GP, DBR 0.03124

RA, Acc 0.00282 RA,GP,DBR 0.93273

Total 1 1 1 1

5.3.2 Revising the Epistemic State

From Table 5.5, (2)(4)(1)(4) = 32 BN structures with non-zero probabilities can

be generated, though not all of them will be consistent BN Structures. The explosion

of structures may seem a disadvantage from a computational perspective, but it is

key to belief change on the dependences in the BN structure, because it allows new

BN structures to be added into the belief state and evaluated on how well they fit the

observations. Intuitively all the consistent BN structures among 32 BN structures

can be generated and then used in the revision phase of the operator. However, the

explosion of the BN structures is often prohibitive hence in practical implementa-

tion of the belief change operator, heuristics are advocated. The Search-and-Score
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algorithm is applied for revision and the updated belief state, will give the structure

priors to be used by the Search-and-Score algorithm.

For the revision part of the Belief Change operator the synthetic data in Table

(5.6) was used. All variables were considered to be binary, and the data was hand-

crafted by the authors only for the purposes of illustrating how the proposed Belief

Change operator works. The revision function used in this illustration is based on the

K2 algorithm (Cooper & Herskovits, 1992) given in Equation (5.9). In reality, for large

Networks any of the Bayesian-based Search-and-Score structure learning algorithms

can be used, provided that they use the updated structure priors in revising the belief

state.

P (D,Bs) =

n∏
i=1

P (πsi → xi)

qi∏
j=1

(ri − 1)!

(Nij − rij − 1)!

ri∏
k=1

Nijk (5.9)

where, n, qi, ri, Nijk, and Nij as defined in Theorem 4.1.

Table 5.6.: The dataset used to illustrate revision

Case
Variables

RA(P ) GP (P ) DBR(J) Acpted(P, J)

1 yes Yes yes Yes

2 no No no No

3 no No yes No

4 yes No no No

5 yes Yes yes Yes

6 yes Yes no No

7 no No no No

8 no Yes yes Yes

9 yes Yes yes Yes

10 no No no No

11 no No yes No

12 no No no Yes

The revised Belief State obtained from applying Revision without Update and

Revision after Update are shown in Table (5.7). The new highest scoring BN structure

is now Bs
1in both cases. This is a result of the evidence in the data supporting
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the proposition, RA(p) → GP (p). The proposition RA(p) → Acpted(p, j) is being

gracefully dropped to make way for the proposition, RA(p)→ GP (p). Assuming the

top of the p-function is defined as P (αji ≥ 0.95), Table (5.8) shows that Belief Base

(K) from the operator defined in this chapter still has three(3) propositions, whereas

the one from classical structure learning without update now has two propositions,

K = {GP (p) → Acpted(p, j), DBR(j) → Acpted(p, j)}. A closer look at the edge

weights in Table (5.8) shows that the UBCOBaN seems to be more stubborn on giving

up beliefs, but is faster to accept new beliefs than the structure learning operator

without Update. This, however, is still to be validated through experimentation. The

focus in this chapter was to illustrate how the proposed belief change operator works.

It is important to note that even through the proposed belief change operator did

not change the Belief Base, the underlying belief state has been significantly changed.

The belief in Bs
1 being the current true network structure has been increased from

0.25 to 0.625 and that of Bs
2 has been reduced from 0.5 to 0.162. The edge weights

have also been changed, with the weight of the edges being supported by the data

bearing more significant change. The weight of the edge RA(p) → GP (p) increased

from 0.35 to 0.6856 under the proposed operator.

Table 5.7.: Revised Belief State

BN Structure Pt(Bs
i ) Pt+1(Bs

i ) without update Pt+1(Bs
i ) with update

Bs
1 0.25 0.56195 0.62515

Bs
1 0.5 0.17029 0.16202

Bs
1 0.15 0.18417 0.15237

Bs
1 0.05 0.0631 0.04466

Bs
1 0.03 0.01972 0.01558

Bs
1 0.02 0.00078 0.00022
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Table 5.8.: The edge weights after revision

Revised Edge Weights

Edge with update Original Edge Weights without Update with Update

RA(p)→ Acpted(p, j) 0.95 0.9369 0.9553

RA(p)→ GP (p) 0.35 0.6455 0.6856

GP (p)→ Acpted(p, j) 0.95 0.9795 0.9842

DBR(j)→ Acpted(p, j) 1 1 1

GP (p)→ RA(p) 0.15 0.1842 0.1524

Acpted(p, j)→ GP (p) 0.02 0.0008 0.0002

5.4 Conclusions

This chapter presented the Unified Belief Change Operator for Bayesian Net-

works. The operator is one instance of the Unified Belief Change Model for Bayesian

Networks defined in Chapter 4. The chapter discussed how the Conditional Event

Probability distributions to be used by the operator are computed using the edge

weights and the propensity of a transition from one BN structure to the other in the

set of possible BN structures.

To illustrate how the operator works, a toy example, modelling beliefs about

paper acceptance for publication in journals, was used. The illustration showed that

the modelling of event probabilities used in this study adheres to the principles of

probability calculus. This was shown by the fact that parent configuration for each of

the variables in the BN structures after Update with the computed event probabilities

summed up to 1 (see Tables (5.3) and (5.5)). The illustration also showed that the

UBCOBaN operator is able to redistribute probability mass within the Belief State

from the BN structures less consistent with the data to the BN structures more

consistent with data.
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6. EMPERICAL EVALUATION OF THE UBCOBAN

USING BENCHMARK BAYESIAN NETWORKS

“Data is a precious thing, and

will last longer than the systems themselves.

Tim Berners-Lee

6.1 Introduction

Having defined the Unified Belief Change Model for Bayesian Network Structures

and its corresponding operator, this chapter presents an empirical evaluation of the

model and the operator in propositional Bayesian Networks. The evaluation of the

model in First Order Bayesian Network structures is deferred to Chapter 7. The

goal of the evaluation was to substantiate the claim being made in this thesis that

use of belief change principles in evolving BN structures results in rational belief

change of Bayesian Network Structures. To this end, the evaluation endeavoured

to establish that: (i) UBCOBaN does not unnecessarily change the structure of a

Bayesian Network (i.e. it fulfills the principle of minimal change); (ii) UBCOBaN has

the agility to shift the network structure towards the true network structure, whenever

there are observations inconsistent with the current structure. Benchmark Bayesian

Network structures were used to evaluate the operator. The main metric used to

evaluate the operator is the Structured Hamming Distance (SHD) (Tsamardinos,

Brown, & Aliferis, 2006). Alternatively, structure score metrics such as the DBeu, KL

divergence, MDL could be used, but they are known to usually favour the algorithms

that used them in learning the network structure

In all the experiments conducted in this and the next chapter, the performance

of UBCOBaN was benchmarked against the performance of the classical Search-and-
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Score algorithm implemented in the Banjo API1 (which will hence forth be referred

to as the the Banjo operator).

6.2 Benchmark Bayesian Networks

The benchmark Bayesian Networks that were used for evaluation in this chapter

are as follows:

1. the ASIA Network (Lauritzen & Spiegelhalter, 1990),

2. the ALARM Network (Beinlich et al., 1989)

3. the HAILFINDER Network (Abramson et al., 1996)

4. the HEPAR II Network (Onisko, 2003), and

5. the ANDES Network (Conati et al., 1997)

The ASIA (Lauritzen & Spiegelhalter, 1990) is a synthetic Bayesian network with

8 nodes and 8 edges. It is the smallest benchmark network used in this study. The

ALARM Network (Beinlich et al., 1989) is the most widely used benchmark Bayesian

Network for learning network structure in Propositional Bayesian Networks. It was

originally described by Beinlich et al (1989 as a network for monitoring patients in

intensive care. The ALARM Network as defined in (Beinlich et al., 1989) consists

of 37 nodes of two, three or four states, and 46 edges. The HAILFINDER Network

(Abramson et al., 1996) is a Bayesian network designed to forecast severe summer hail

in north eastern Colorado. It has 56 variables and 66 edges. The HEPAR II Network

(Onisko, 2003)was designed as a probabilistic graphical causal model for diagnosis of

liver disorders for use in both clinical practice and medical training. The HEPAR

II network has 70 variables and 123 edges. The ANDES Network was designed as a

model for an Intelligent Tutoring System for Newtonian physics. The network has

223 nodes and 338 edges.

1https://users.cs.duke.edu/ amink/software/banjo/
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6.3 Implementation of UBCOBaN

UBCOBaN was implemented in Java using the Banjo API 2 as the underlying

API to provide the classical Search-and-Score BN Structure Learning algorithms. The

core architecture of Banjo is shown in Figure 6.1.

Figure 6.1.: The core Banjo Objects.

This section discusses the core Banjo components that were modified for the

algorithm to work as a Belief Change operator for structure in Bayesian Networks.

Banjo implements the following generic components for Search-and-Score algorithms:

1. Searcher : The Searcher is the top level component of the Banjo architecture

that implements how a BN structure learning algorithm searches through the

space of possible structures to find a BN structure that best fits the data.

For any BN structure learning algorithm, a searcher is built around a search

loop that executes for an allotted amount of time or until a specified number

of networks have been proposed and considered. In order for the searcher to

explore the BN structures in the search space, it uses a Proposer component to

2https://users.cs.duke.edu/ amink/software/banjo/
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suggest alternative BN structures. To make a decision on whether to accept the

proposed BN structure the Evaluator and the Decider components are used.

A proposed network is only accepted by the Decider, when its score computed

by the Evaluator is better than the one of the current best network.

2. Proposer: The proposer is responsible for selecting a change (or a list of

changes) based on whether to add, delete, or reverse an edge in the current

network. In Banjo the proposer implements two similar functions: one pro-

vides a single change (named suggestBayesNetChange) and one provides a

list of changes (named suggestBayesNetChanges). The function of suggest-

BayesNetChange is to implement the RandomLocalMove proposer and the

suggestBayesNetChanges is used to implement the AllLocalMoves proposer.

The differences between the RandomLocalMove and AllLocalMoves proposer

is that in the former the searcher evaluates the efficacy of resulting BN struc-

ture after a single local change, while in the latter the search evaluates the BN

structure after a group of all the possible local moves.

3. Evaluator: The Evaluator computes the score of a network, based on some

scoring metric. Banjo currently implements only one Evaluator, which uses

the BDe metric to compute a network’s score, as described by Cooper and Her-

skovits (1992). This is one of the components which was modified in this study

to enable the scoring metric to use the updated Belief State parent structure

priors.

4. Decider: A Decider in Banjo determines whether the proposed network in

the current search iteration will be accepted as the new current network for the

next iteration, or if it will be rejected, in which case the search proceeds from

the current network.

Implementation of UBCOBaN was done through adapting how some of the com-

ponents above work and introduction of additional components to cater for the Belief
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update component and management of Epistemic States. The decider and the pro-

poser components remained the way they were implemented in Banjo. The construc-

tor for Searcher component was only slightly modified for it to accept edgeweights

from the Epistemic State as parameters for the search process. The edgeweights were

to be used by the evaluator component. The evaluator component was modified as

discussed in Section 5.2.2 such that it uses Equation 6.1 to compute the Bayesian

Dirichlet (BDe) metric for the proposed BN structures.

P (D,Bs) =

n∏
i=1

P (πsi → xi)

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

ri∏
k=1

Γ(Nijk′ +Nijk)

Γ(N ′
ijk)

(6.1)

The BDe metric as implemented in Banjo assumes uniform structure priors. By so

doing the searcher disregards the use of prior information on the BN structures in

changing the current BN structure in response to the data observed. The modification

done to the evaluator for it to implement Equation 6.1 was therefore necessary to

enable the searcher to use prior structure information in the form of edge weights to

compute the DBe scores.

6.3.1 Implementation of the Data Models for the Epistemic Space

An XML data model was defined to hold the Epistemic State at any given time.

XML was a natural choice for the data model to enable the Epistemic State to be

sharable over the network across different administrative domains. The XML schema

for the data model is shown in Appendix A. Appendix B shows an except of an Epis-

temic State for the ASIA network. A utility component for reading data from and

writing data to the Epistemic State file, EpistemicStateProcessor was implemented

and added to the Banjo utility components. This utility component uses JAXB for

marshalling Java objects into XML and and vice-versa. Another utility component

which was added for handling of uncertainty in the model is the EdgesLikelihoodCom-

puter component. This component was responsible for computing the edgeWeights



103

for a given belief state. It was implemented as a utility component to enable it to be

used after both Belief Update and Belief Revision operations.

6.3.2 Implementation of the Belief Update Model

The updater component responsible for Belief Update was implemented taking

advantage of what is existing in the Banjo API and the afore-mentioned compo-

nents. The component computes the updated Epistemic State using the Conditional

Event Probability distribution and the Belief State, a distribution over all the pos-

sible networks. Thus, there was need for computing Conditional Event Probability

distribution. Thus, apart from implementing the update process, this component

also implemented Algorithm 5.1 discussed in Chapter 5. Figure 6.2 shows the overall

architecture of UBCOBaN.

Figure 6.2.: UBCOBaN Core Components.
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6.4 Evaluation of the Unified Belief Change Model

For all the experiments carried out in this study, a greedy searcher was used to

search for the highest scoring BN structure from the space of all possible structures.

The following metrics were used to evaluate the operator (de Jongh & Druzdzel, 2009)

Missing Edges (ME): counts the number edges that are in the target BN struc-

ture, but are not in the learned BN structure.

Extra Edges (EE): counts the number of edges that are present in the learned

structure but are not in the target BN structure.

Correct Edges(CE): counts the number of edges that are both in the target BN

structure and the learned structure, regardless of their orientation.

Correct Edge Direction (CED): counts the number of directed edges in the

learned structure that have the same orientation with some of the edges in the target

BN structure.

Incorrect Edge Directions (ICED): counts the number of directed edges in

the learned structure that are oriented incorrectly when compared with the target

BN structure.

Structural Hamming Distance (SHD): Counts the number of changes that

have to be made to the learned BN network for it to turn into the target BN structure.

It is the sum of measures; Missing Edges, Extra Edges, and Incorrect Edge Directions.

SHD = ME + EE + ICED (6.2)

Recall: gives the ratio of correctly identified edges to the total number of edges

which were suppose to be identified. It is a measure of how good the structure learning

algorithm is in identifying all the correct edges.

Recall =
CED

ME + CED + ICED
(6.3)
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Precision: it gives a ratio of the correctly identified edges to the total number of

edges identified. it is a measure of how good the structure learning algorithm is at

returning only the correct edges.

Precision =
CED

EE + CED + ICED
(6.4)

For computation of precision and recall, the Correct Edge Directions measure was

used instead of the Correct Edges. This was meant to make sure that Recall and

Precision are both based on the intuition used in the definition of the SHD metric.

Even though in terms of conditional probability calculus, an Incorrect Edge Direction

does not result in a different probability distribution from the target BN as long as

the v-structures are maintained, the SHD still considers the cost of ICED in its

computation.

For all experiments that needed data simulation, the bnlearn package 3 was used

for data simulation. The Rserve4 package was used to enable the java program to

communicate with R for data simulation. All data simulation was done from the

benchmark BNs using the bn.fit models stored in bnlearn.

6.4.1 Evaluating the Minimal Change Property of UBCOBaN

The minimal change property of UBCOBaN was evaluated through analysis of

its accuracy and stability benchmarked against the the classical Search-and Score

algorithm implemented in Banjo. Two sets of experiments were carried out.

The first set of experiments investigated the accuracy and stability of UBCOBaN

in terms of the returned Bayesian Networks deviating from the BN structure emitting

the data being used to effect Belief Change. This was achieved through repeatedly

sampling data from the gold BN structure and using the simulated data to effect

Belief Change on BN structure from the previous run. Accuracy and Stability of the

the resulting BN structures were then evaluated. Accuracy was measured in terms of

3http://www.bnlearn.com/
4https://cran.r-project.org/web/packages/Rserve/index.html
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the SHD of the resulting BN structure from the BN structure simulating the data.

Stability of the Belief Change operators was evaluated in terms of how much the re-

sulting BN structure deviated from the BN structure from the previous run. Stability

deals with ascertaining how sensitive the predictions of a machine learning models

are to small changes in the training data. A stable learning algorithm would produce

almost similar results for small changes in the training data. Owing to the fact that

stable learning algorithms return almost consistent results, stability plays a crucial

role in entrenching users’ trust in the algorithms. In our case, stability is charac-

terised in terms the dispersion of the SHDs of the retained current BN structure from

the one that resulted from the previous run. Thus, our conceptualisation of stability

is characterised as the distribution of pairwise similarities between the BN structure

obtained from the current run compared to the BN structure from the previous run.

This conceptualisation is similar to how stability is evaluated for clustering algorithms

in (Ben-Hur, Elisseeff, & Guyon, 2002; Lange et al., 2004). However, Stability of Be-

lief Bases was evaluated in terms of the the dispersion of the SHDs of the Belief Bases

from the gold BN structure simulating the data. In this case, a stable Belief Change

Operator returns almost the same Belief Base for each run. This implies that the

dispersion of the SHDs of the resulting BN structures from their corresponding gold

BN structures will be almost zero.

The second set investigated the effect of the sample size on the accuracy and

stability of the evolved BN structures. This was achieved by varying the sample

sizes and observing the effect of the increase of the sample size on the accuracy and

stability of the resulting BN Structures.

For each of the experiments discussed above the afore-mentioned metrics were

recorded comparing:

i. the Belief Base (Edges with a probability of 1) to the gold BN structure.

ii. the returned BN structure to the gold BN structure, and

iii. the returned BN structure to the prior BN structure.
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6.4.1.1 Experimental Setup

In the first set of experiments, 30 runs of incremental application UBCOBaN on

the BN structure that resulted from the previous run were conducted. The data

used in each run would be simulated from the gold BN structure. For the first

run, belief change was performed on the gold standard Bayesian Network using the

data simulated from the gold standard Bayesian Network. The goal here is two-fold.

First, we would want to evaluate how much the returned BN structure and its Belief

Base would have deviated from the gold BN structure after a considerable number of

Belief Change iterations. To this end, the average metrics for the last 5 of the 30 runs

were used to check how much the best BN structures and their corresponding Belief

Bases deviated from the gold BN structure. Second, we would want to investigate

whether the Belief Change Operators consistently returned almost the same best BN

structure for all 30 runs conducted. This was achieved by analysing both the SHD of

the returned BN structure from the BN structure returned by the previous run, and

the dispersion of the same SHDs. Small SHD values imply stability of the operator

and large values instability. If the operators were perfectly stable they would return

the same BN structure for each run with a constant SHD from the BN structure

returned from the previous run. Thus, the dispersion of the SHDs would be zero.

In the second set of experiments, the sample sizes were being incremented by 2000

units starting from 200 samples. For each sample size 10 runs were conducted. The

samples were simulated from the gold BN structure. The BN structure from the

previous run was taken to be the prior network for each run. The ME, EE, CED,

ICED, SHD, Recall and Precision metrics of the best BN structure from the gold BN

structure, best BN structure from the prior BN Structure, and the Belief Base from

the gold BN structure were recorded. Accuracy and stability for both the best BN

structures and the Belief Bases were evaluated as discussed above for each sample

size.
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6.4.1.2 Experimental Results: Accuracy and Stability UBCABaN based

on Belief Bases

This section discusses the results of an investigation of the accuracy and stability

of the Belief Bases (edges with a probability of 1) returned by UBCOBaN.

Tables 6.1 and 6.2 show a comparison of UBCOBaN and Banjo with respect to

how close to the gold standard the Belief Bases they returned are using the met-

rics; Missing Edges, Extra Edges, Correct Edge Direction, Correct Edges, Structural

Hamming Distance, Recall and Precision. The metrics shown in the table are an av-

erage of the last 5 runs of the 30 runs of incremental application of the belief change

operators.

Table 6.1.: Average distance of Belief Bases from the gold BN Structures with respect to

ME, EE, CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 1 4.2 0 0 6 3.6 7 3.8

ALARM 1 5 0 0 43 41 45 41

HAILFINDER 20.6 13.4 2.6 2.8 45.4 52.4 45.4 52.6

HEPAR II 11.4 25.4 0.8 2.4 110.6 95.6 111.6 97.6

ANDES 0.4 10.6 0.4 1.6 337.6 326.3 337.6 327.4

Table 6.2.: Average distance of Belief Bases from the gold BN Structures with respect to

SHD, Recall, and Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 2 4.4 0.75 0.45 0.857 0.933

ALARM 3 5.2 0.935 0.887 0.956 0.995

HAILFINDER 23.2 16.4 0.688 0.794 0.946 0.949

Hepar II 13.2 29.8 0.899 0.777 0.984 0.957

ANDES 0.8 12.8 0.999 0.967 0.999 0.993
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The results reflect that UBCOBaN returned Belief Bases that are closer to the

gold BN structures than Banjo in all the benchmark BNs used, except for the HAIL-

FINDER network where Banjo performed much better than UBCOBaN in all met-

rics. For the HAILFINDER network, Banjo managed to return, on average, belief

bases with 80.3% (53 out of 66) of the edges in the gold BN, with an average SHD of

16.4 compared to UBCOBaN which returned about 69% (45 out of 66) of the edges in

the gold BN, with an average SHD of 23.2. This was due to the fact that UBCOBaN

was returning 300 BN structures, the set maximum number of best networks, whereas

Banjo was always returning less than 100 BN structures even though the maximum

number of best networks was set to 300. The net effect of the 300 best networks

returned by UBCOBaN was that some probability mass which would have otherwise

be assumed by some edges if less than 100 BN structures were returned was now

being distributed to other less entrenched edges that appear in the other 200 less en-

trenched BN structures ranked in positions 101 to 300. Re-running UBCOBaN with

the nBestNeworks5 set to 100 resulted in UBCOBaN returning Belief Bases closer

to the target network than Banjo. The researcher hoped that the discarding of BN

structures that do not fit the data well using Equation (5.3) discussed in Section 5.2

would address this problem. This suggests that the hyperparameter for the maximum

number of BN Structure to be returned, and the c parameter need to be carefully

considered for each Benchmark Bayesian Network.

To ascertain the stability of UBCOBaN compared to Banjo based on the SHD of

the Belief Bases returned from the gold BN structure, all 30 runs were used to plot

superimposed violin and boxplots plots. These give a view of how the SHD values

are distributed. Here stability was analysed relative to the sensitivity of the SHD

of the Belief Bases returned by the operators from the gold BN structure simulating

the samples. The results of the analysis are shown in Figure (6.3). As was shown

in Table 6.2 the Belief Bases returned by UBCOBaN were generally closer to their

5nBestNetworks is a hyperparameter used in the Banjo API to set the maximum number of struc-
tures that a structure learning algorithm should return
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corresponding gold BN structure than those returned by Banjo for all the benchmark

networks except for the HAILFINDER network. However, the violin plots show

that the SHDs of UBCOBaN from the the gold BN structures are more densely

distributed over a small range of values. This indicates that UBCOBaN was less

sensitive to the changes in the data used to effect Belief Change provided the data was

simulated from the gold BN structure the Belief Change Operator seeks to rediscover.

Although the SHDs of the Belief Bases returned by UBCOBaN from the gold BN

structure for the smaller networks (ASIA and ALARM networks) were not necessarily

zero, their dispersion was almost zero. This indicates that UBCOBaN is stable for

all the networks considered in the experiment. UBCOBaN was found to be less

stable on the HEPAR II and the HAILFINDER network, but it still had better

stability when compared to Banjo. The Belief Bases returned by UBCOBaN on

the ANDES network were relatively closer to the gold BN structure than on all the

other networks. However, the dispersion was a bit higher than that for the ASIA

and ALARM networks. Given the size of the ANDES network, one would have

expected Belief bases from ANDES network to have the worst SHD from the gold BN

structure than all the other networks. This surprising result is most likely due to some

factor inherent in the benchmark ANDES network used to simulate the data. This

hypothesis seems to be supported by the fact that Banjo also gets relatively good

results for a Network of its size. This could be due to the quality of the parameters

defined for the network.

6.4.1.3 Experimental Results: Accuracy and Stability of UBCOBaN based

on Best BN Structures

Tables (6.3) and (6.4) show a comparison of the SHDs of the best BN structures

from the gold BN networks. The results shown in the tables reflect the average of the

last 5 runs of the 30 runs conducted for each benchmark BN. UBCOBaN produced

BN structures which are closer to the gold BN than BANJO for all the benchmark
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(a) ASIA Network (b) ALARM Network (c) HAILFINDER Network

(d) HEPAR II Network (e) ANDES Network

Figure 6.3.: Stability of UBCOBaN based on the dispersion of SHD of the Belief Bases from

the gold BN structure

networks except for the ASIA network, where the SHD from gold BN structure was

2 for both UBCOBaN and Banjo. On the ASIA network, Banjo was also found

to be better in returning most of the edges in the gold BN structure (higher recall)

and not returning edges that are not in the gold BN structure (higher precision) than

UBCOBaN. A closer look at the other metrics for the ASIA network revealed that

on average UBCOBaN returned slightly more Correct Edges than Banjo. However,

its SHD, recall and precision were adversely affected by Incorrect Edge Directions.

Thus, in terms of representation of the statistical regularities in the simulated data,

UBCOBaN returned BN structures closer to the gold BN structures than Banjo.

This is because, as long as an edge reversal does not result in the introduction or
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removal of v-structures, the BN with reversed edges represents the same distribution

as the original BN. The BN with reversed edges and the original BN are said to be

Markov Equivalent (Niinimaki & Parviainen, 2012; Verma & Pearl, 1991).

Table 6.3.: Average distance of Best BN Structures from the gold BN Structures with

respect to ME, EE, CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 0.6 0.8 0 0.6 6 6.6 7.4 7.2

ALARM 1 0.8 0 1 43 42.6 45 45.2

HAILFINDER 0 3.2 3 9.6 64 61.2 66 63

HEPAR II 1.4 8.4 3.6 10.2 120.6 107.8 121.6 114.6

ANDES 0 2 1 8 338 333.2 338 336

Table 6.4.: Average distance of Best BN Structures from the gold BN Structures with

respect to SHD, Recall, Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 2 2 0.75 0.825 0.814 0.866

ALARM 3 4.4 0.935 0.926 0.955 0.922

HAILFINDER 5 14 0.975 0.927 0.933 0.845

HEPAR II 6 25.4 0.98 0.876 0.963 0.864

ANDES 1 12.8 1.00 0.986 0.997 0.969

Tables (6.5) and (6.6) show how UBCOBaN compares to Banjo in terms of their

stability measured as the SHD of the returned BN structure from the prior BN Struc-

ture. The results shown in the tables are averages of all the 30 runs of incremental

application of the Belief Change Operator on the BN structure obtained from the

previous run and the data simulated from the gold BN structure. UBCOBaN was

found to return BN structures closer to the prior BN structures than Banjo for all

the networks considered. This indicates that UBCOBaN was consistently returning

almost similar BN structures for each dataset simulated. Thus, UBCOBaN was less

sensitive to the changes in the samples used to effect Belief Change, as long as the

samples are simulated from the BN structure the Belief Change operator aims to
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rediscover. The recall and precision values for UBCOBaN were higher than those

of Banjo for all the networks, indicating that UBCOBaN was doing better than

Banjo in returning almost all and only the edges in the prior BN structure. This is

evidence that UBCOBaN was better at adhering to the principle of minimal change

than Banjo. Figure 6.4 shows the superimposed violin and box plots of the SHDs of

the Best BN structures from the prior BN structures. The plots show that the SHD

values for UBCOBaN were distributed over a narrower range compared to those from

Banjo, implying that UBCOBaN is a more stable Belief Change operator compared

to Banjo.

Table 6.5.: Average distance of Best BN Structures from the Prior BN Structures with

respect to ME, EE, CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 0.13 1.167 0.13 1.133 7.8 6.167 7.8 7.267

ALARM 0.03 0.667 0 0.7 44.93 42.77 45 45

HAILFINDER 0.03 0.6 0.03 0.8 69 66.9 69 71.33

HEPAR II 3.2 8.87 3.47 9.0 121 107 121 112

ANDES 0.867 4 0.8 4 338.27 334 338.3 340

Table 6.6.: Average distance of Best BN Structures from the Prior BN Structures with

respect to SHD, Recall, Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

ASIA 0.267 3.4 0.984 0.75 0.984 0.75

ALARM 0.1 3.6 0.998 0.937 0.999 0.936

HAILFINDER 0.067 5.83 0.999 0.93 0.999 0.927

HEPAR II 6.97 22.83 0.972 0.886 0.970 0.885

ANDES 1.7 14 0.997 0.971 0.998 0.971
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(a) ASIA Network (b) ALARM Network (c) HAILFINDER Network

(d) HEPAR II Network (e) ANDES Network

Figure 6.4.: Stability of UBCOBaN based on the dispersion of SHD of the best BN structure

from the prior BN structure

6.4.1.4 Experimental Results: The effect of Sample Size on the Accuracy

and Stability of the Belief Change Operators

The next set of results report on the effect of sample size of the data used to

effect belief change on the accuracy and stability of the Network structure. In these

experiments, data was simulated from the gold BN, and UBCOBaN and BANJO

were used to effect belief change on the current network structure.

To evaluate the effect of sample size on the accuracy of the operator, the resulting

best BN structure and its corresponding Belief Base were compared to the gold BN

structure, which was used to simulate the data, and for evaluating stability the re-
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sulting network was compared to the prior network. 10 runs were conducted for each

sample size. For each run, the network from the previous run was used as the prior

network. The ASIA network was not used in these experiments.

The results in Table 6.7 show the comparison of UBCOBaN and BANJO in terms

of the SHD of the best BN structure returned from the gold BN structure. Generally,

the BN structures returned by UBCOBaN were closer to the gold BN structures than

those returned by Banjo. For the ALARM and ANDES networks, UBCOBaN re-

turned BN structures close to the gold standard BN structures, even for small sample

sizes. The SHDs of the best BN structues returned by UBCOBaN from the gold BN

structures were not dependent on the sample size. For the HAILFINDER and the

HEPER II networks, the SHDs of the best BN structures returned by UBCOBaN

from the gold BN structures were generally decreasing with increases in the input

size. For Banjo, the SHDs of the best BN structures returned from the gold BN

structures were generally decreasing with increases in the input size for all the bench-

mark networks considered. These results indicate that UBCOBaN is more robust

than Banjo.

For the HAILFINDER and HEPAR networks, both models struggled to return the

correct BN for smaller sample sizes. The poor results obtained for the HAILFINDER

and the HEPAR II networks could be due to the parameters in the bn.fit models6 in

the bnlearn package 7 which was used to simulate the data used for belief change in

the experiments. The fact that both Banjo and UBCOBaN obtained better results

on ANDES, a larger BN compared to the HAILFINDER and the HEPAR II networks,

shows that the poor performance in the HAILFINDER and the HEPAR II network

could be due to something particular to the networks.

An interesting result was observed in the application of UBCOBaN to the ANDES

network for a sample size of 200. An average SHD 0.2 from the gold BN structure of

was observed. This is more likely to be due to the entrenchment of the correct edges in

6http://www.bnlearn.com/bnrepository/discrete-large.html#hailfinder,
http://www.bnlearn.com/bnrepository/discrete-large.html#hepar2
7http://www.bnlearn.com/bnrepository/
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the Belief States, which could not be offset by the contribution from the observations.

BANJO does not have any mechanism for handling the belief state hence the scores

from the sample is all the information it uses to evolve the BN structure. However,

this result was not observed for the other networks.

Table 6.7.: The effect of sample size on the accuracy of the operators measured as the SHD

of the best BN structures from the gold BN structures

ALARM HAILFINDER HEPAR II ANDES

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

200 3.2 24.9 44 55.6 73.7 138.5 0.2 188

2200 4.1 6.8 18.6 32.5 48.7 72.1 5.3 59.1

4200 4 7.2 8.9 20.3 32.3 52.7 0.4 35.4

6200 3.9 6 5.6 13 14.3 38.6 1 16

8200 4.1 5.7 4.1 13.3 15.3 32.3 0.3 10.1

10200 3.9 5.8 4.1 10.8 9.4 29.2 1 10

12200 4 5 4 9.1 8.4 25.1 0.9 10.9

14200 3.1 5.1 4.1 13 7.3 23.7 1.3 9.36

16200 3 4.6 3.9 12.4 8.1 22.3 1.1 8.7

18200 3.1 3.8 4.2 9.4 10.5 19.6 1.2 7.8

20200 3 3.3 4 12.7 8.7 20.6 1.3 8.4

The effect of the sample size on the accuracy of UBCOBaN in terms of the Belief

Bases returned was also investigated. Table (6.8) shows the effect of the sample

size of the data used to effect Belief Change on the Belief Bases returned by the

UBCOBaN and the Banjo operator. The results generally show that the SHD of

the Belief Bases from the gold BN structure decreases with increases in the sample

size. However, for application of UBCOBaN on the ANDES network no well defined

pattern was observed.

The Belief Bases from UBCOBaN were found to be generally closer to the gold

network than those from Banjo, except for the HAILFINDER network. The results

on HAILFINDER confirm the results which are reported in Table (6.1), that Banjo

returned Belief Bases closer to the gold BN structure than UBCOBaN. This is owing

to the same reason given for the results in Table (6.1).
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Table 6.8.: The effect of sample sizes on the accuracy of the operators measured as the SHD

of the Belief Bases from the gold BN structure

ALARM HAILFINDER HEPAR II ANDES

UBCOBaN BANJO UBCOBaN BANJO UBCOBaN BANJO UBCOBaN BANJO

200 4.3 17.9 45 54.9 86.3 116.5 0.1 157

2200 5 6.9 40.3 32.7 63.7 82.7 5.4 60.9

4200 4.1 6.4 34.7 24.9 50.4 67.6 0.2 41.7

6200 4 6 28.3 16.7 25.1 52.9 0.1 19.6

8200 4 5.8 25.5 14.7 25 47.9 0.2 14.8

10200 4 6.2 24.2 14.6 19.8 40.9 0.1 13.9

12200 4 5.7 23.4 13.6 17.4 36.3 0.4 14.6

14200 3.6 6.1 23.9 15.8 15.3 34.4 0.7 12.6

16200 3 5.8 23 15.6 14.2 29.9 0.1 13.8

18200 3.1 5.2 22.4 13.9 17.3 29.2 0.4 11.8

20200 3.2 4.9 23.3 15.2 13.6 26.4 0.3 13.2

To evaluate the effect of sample size on the stability of the resulting BN structures,

the best BN structures returned were compared to the prior BN structures used in

the Belief Change process. Figure (6.5) shows how the BN structures returned by

both UBCOBaN and Banjo compare with the prior BN structure using the average

SHD for each sample size. The 95% Confidence Interval (CI) error bars for operators

do not overlap. This shows that a Statistical Test of difference between two means

will conclude that UBCOBaN returned BN Structures that are significantly closer to

the prior BN structure than those returned by Banjo for all the sample sizes. This

confirms the results shown in Table 6.6 that UBCOBaN is generally more stable than

Banjo. The length of UBCOBaN ’s 95% CI error bars for the ALARM and the AN-

DES Networks seem be independent to sample size. However, for the HAILFINDER

and HEPAR II network the 95% CI error bars seem to be decreasing with increases in

the input size. A comparison of the sizes of UBCOBaN ’s error bars for each sample

size to those from Banjo confirms the findings from Figure (6.4) that UBCOBaN is

generally a more stable Belief Change Operator then Banjo.
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(a) ALARM Network (b) HAILFINDER Network

(c) HEPAR II Network (d) ANDES Network

Figure 6.5.: The effect of sample size on the Stability of the Belief Change Operators

The average SHD of the best BN structures returned by UBCOBaN from the

prior BN structure was almost constant for all the networks considered except for the

HAILFINDER network where the SHD was found to be decreasing with increases in

the sample size. For Banjo the SHDs were decreasing with increases in the sample
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sizes for all the networks. This implies that the stability of Banjo is dependent on

the size of the data used to effect Belief Change.

6.4.2 Evaluating the Agility of the Belief Change Operator

To evaluate the sensitivity of the operator to new information inconsistent with

current BN structure, only the ALARM and the ANDES networks were used. For

each of the BNs, nine (9) Bayesian Network structures of varying Structural Hamming

Distance from the gold BN structure were created. The structure with the least

Hamming Distance from the gold standard was labelled Str 1 and the one with the

furthest distance was labelled Str 9. The gold standard was labelled Str 0, and Str 2

through to Str 8 were labelled accordingly with respect to their distance from the gold

standard. Each structure had its two closest (with respect to the Structural Hamming

Distance) neighbours labelled adjacent to it. Before starting the experiments for

which the data was recorded, UBCOBaN was repeated applied on Str 9 with data

simulated from Str 9 up until the structure had converged to a stable Str 9.

The two operators were then used to evolve the BN structure from Str 9 to Str 0.

For each structure, Str i, data to evolve the structure was simulated from Str (i− 1)

and the respective operator would be applied up until the structure had converged

or 15 iterations had been reached. The structure from the previous run was used as

the prior network, and in moving from one structure to the next one, the structure

that was returned from the last run of the previous BN, Str (i − 1), was used as

the prior network. The BN structure used to simulate the data Str i was used as

the target BN structure against which the best returned BN structure was compared.

The metrics; ME, EE, CED, CE, SHD, recall, and precision, measuring the distance

of the returned BN structure from the target BN structure were recorded. Four(4)

experimental rounds of evolving the BN structure from Str 9 to Str 0 were carried

out for each Belief Change operator. The last 5 runs for each structure from each of

the 4 rounds were used to compute the average values of the metrics considered in
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this study and the standard deviations of the SHD of the BN structures returned by

the operators from the target BN structures.

Tables (6.9) to (6.10) show the results obtained for ALARM Network. The results

do not show much difference between UBCOBaN and Banjo, with respect to all the

metrics.

Table 6.9.: ALARM:Average distance of Best BN Structures from the target BN Structures

with respect to ME, EE, CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

Str 8 35.4 34.87 0.0667 1.53 47.33 43.67 51.6 49.47

Str 7 23.87 22.27 0 0.67 9.13 12.33 19.13 20.73

Str 6 18.4 16.47 0.0667 0.47 23.4 25.33 27.6 39.53

Str 5 17 16.53 0 1.13 22 19.27 24 24.47

Str 4 20.87 19.8 0 0.8 42 43 44.13 45.2

Str 3 1 1 0 0.6 24.67 23.8 27 27

Str 2 16 15.07 0.0667 0.53 41.67 41.2 44 44.93

Str 1 0.2667 0.27 0 0.87 43.4 41.87 44.73 44.73

Str 0 1 1 0 1.27 42.25 42.27 45 45

Table 6.10.: ALARM: Average distance of Best BN Structures from the target BN Struc-

tures with respect to SHD, Recall, and Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

Str 8 39.73 42.2 0.57 0.56 0.999 0.97

Str 7 33.87 31.33 0.28 0.36 1 0.95

Str 6 22.67 21.13 0.56 0.61 0.997 0.98

Str 5 19 22.87 0.56 0.54 1 0.94

Str 4 23 22.8 0.67 0.68 1 0.98

Str 3 2.33 4.8 0.96 0.96 1 0.98

Str 2 18.4 19.33 0.72 0.73 0.998 0.99

Str 1 1.6 4 0.99 0.99 1 0.98

Str 0 3.75 5 0.92 0.98 1 0.93

However, a comparison of the standard deviations on the SHD of the best returned

BN structure from the target BN structure showed that UBCOBaN was more consis-

tent in the best BN structures it was returning than Banjo. The standard deviations

on the last 5 runs for each structure is shown in Table (6.11). The standard deviation
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of the SHDs for UBCOBaN were all less than 1, whereas those from Banjo were

greater than 1.3.

Table 6.11.: ALARM: STDEV of the SHD from the target BN, calculated from the last 5

of the 10 runs

STDEV on SHD

UBCOBaN Banjo

Str 8 0.96 2.24

Str 7 0.99 2.01

Str 6 0.72 1.85

Str 5 0.00 2.53

Str 4 0.00 1.08

Str 3 0.49 1.18

Str 2 0.63 1.59

Str 1 0.51 1.85

Str 0 0.00 1.31

The results for the ANDES network (See Figures 6.12, 6.13 and 6.14) showed that

UBCOBaN returned best BN structures that are much closer to the BN structure

simulating data than BANJO. Generally the SHD was decreasing as the target BN

structures got closer to the gold BN structures.

Table 6.12.: ANDES:Average distance of Best BN Structures from the target BN Structures

with respect to ME, EE, CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

Str 8 5.93 11.7 0.8 3.1 132.3 127.05 155.1 149.3

Str 7 4.27 13.4 0.93 4.2 150.33 141 170.73 161.6

Str 6 7.53 24.65 5.4 6.6 198.33 192.15 213.47 204.85

Str 5 5.13 24.95 5.93 9.3 236.67 218.85 249.86 230.05

Str 4 1.67 14.25 4.73 8.6 256.53 243.6 267.33 254.75

Str 3 1.2 7.5 6.86 8.8 270.53 261.95 277.8 271.5

Str 2 1.93 6.46 6.73 9.38 292.47 286.33 298.07 293.54

Str 1 0.33 4.95 5.87 9.45 321.33 313.7 323.67 319.05

Str 0 0 2.3 5.73 10.15 336 331.75 338 335.7

A comparison of the standard deviations on the SHD of the best returned BN

structure from the gold BN structure showed that UBCOBaN was more consistent in

the best BN structures it was returning than BANJO. The average standard devia-
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Table 6.13.: ANDES: Average distance of Best BN Structures from the target BN Structures

with respect to SHD, Recall, and Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

Str 8 29.53 37.05 0.82 0.79 0.84 0.83

Str 7 25.6 38.2 0.86 0.83 0.88 0.87

Str 6 28.07 43.95 0.90 0.84 0.91 0.91

Str 5 24.27 45.45 0.93 0.86 0.93 0.91

Str 4 17.2 34 0.95 0.91 0.94 0.93

Str 3 15.33 25.85 0.97 0.94 0.95 0.93

Str 2 14.27 23.04 0.97 0.95 0.96 0.95

Str 1 8.53 19.75 0.99 0.97 0.98 0.96

Str 0 7.73 16.4 0.99 0.98 0.98 0.96

tions on the last 5 runs for each of the structures is shown in Table (6.14). UBCOBaN

had less standard deviations on all the other BN structures except for Str 6.

Table 6.14.: ANDES: STDEV of the SHD from the target BN, calculated from the last 5

of the 10 runs

STDEV on SHD

UBCOBaN Banjo

Str 8 1.92 4.76

Str 7 2.23 5.71

Str 6 6.24 5.4

Str 5 4.23 5.04

Str 4 3.84 4.24

Str 3 0.9 4.36

Str 2 2.2 3.85

Str 1 2.2 3.18

Str 0 2.22 4.71

6.4.3 Empirical Evaluation of the Importance of Belief Update Compo-

nent in the Unified Belief Change Model

This section presents an empirical investigation into the importance of the Belief

Update component in the Unified Belief Change Model presented in this study. In

order to do so, we introduce another operator for Belief Change created by removing

the update component from the UBCOBaN operator. For easier reference to the
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resultant operator, we named it Epistemic Revision (E-Revision). E-Revision, like

UBCOBaN, uses epistemic states as input to a Belief Change process but it however

uses the unupdated Epistemic States.

The experiments carried out in Section 6.4.2 were repeated but this time around

with the E-Revision operator. The results obtained were combined with the results

in Section 6.4.2 for UBCOBaN and Banjo to obtain the results presented in Figure

6.6. The plots in Figure 6.6 were plotted from the the average of the last 5 runs of

each of the four rounds of BN structure evolution from Str 9 to Str 0. Thus, the

results only show the average SHDs of the returned best BN structures from Str 1

for Str 0 (the gold BN Structure).

(a) ALARM Network (b) ANDES Network

Figure 6.6.: A Comparison of SHD for Banjo, E-Revision, UBCOBaN

The error bars shown in Figure 6.6 are 95% Confidence Interval (CI) error bars.

The results for the ALARM Network show that even though the structures returned

by UBCOBaN seem to have the least SHD from the gold BN structure followed by E-

Revision and then Banjo, the differences are not necessarily statistically significant.

The error bars overlap for all 3 operators. For the ANDES Network the results show
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that the BN structures returned by UBCOBaN are significantly closer to the gold BN

structures than the ones returned by Banjo. Although the BN structures returned by

E-Revision seem to be closer to the gold BN structure than those returned by Banjo

and further than those returned by UBCOBaN, the results are also not statistically

significant.

The results this far presented show that UBCOBaN is a better Belief Change

Operator when compared to the classical Search-and-Score algorithms represented by

Banjo. However, there seems to be no significant difference between UBCOBaN and

E-Revision. In a bid to investigate the importance of the Belief Update component

to the Unified Belief Change Model, we set up experiments to investigate the effect of

the Update component to the convergence UBCOBaN to the true network structure.

Banjo was repeatedly applied to the BN structure from the previous run, with data

simulated from Str 9 up until the operator was almost consistently returning the

same BN structure. Thereafter, the respective operators were applied using the data

simulated from the corresponding gold BN structure. For each operator, 5 rounds of

of evolving Str 9 to Str 0 were carried out, and for each run 15 runs of Belief Change

were performed. For the ALARM network 2000 samples were simulated for each run,

and 5000 samples were simulated for each run on the ANDES network. The decision

on the number of samples to be simulated for each network was influenced by the size

the networks.

The aim of these experiments was to investigate the behaviour of each operator

as the returned BN structures converge to the gold BN structure from Str 9. Figure

6.7 shows the results of convergence analysis of the best BN structures towards the

gold BN structure. The results show that the rate of convergence from Str 9 to

the gold BN structure of the ALARM network for E-Revision seems to be the same

as that of UBCOBaN. However, UBCOBaN generally returns BN structures closer

to the gold BN structure for each run. For the ANDES Network E-Revision seems

to converge to gold BN structure faster than UBCOBaN from run 1 to run 2 but

thereafter it slows down. From run 5 UBCOBaN began to return BN Structures
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(a) ALARM Network

(b) ANDES Network

Figure 6.7.: Convergence of the Belief Change Operators based on the Best BN structures

that are structurally closer to the gold BN structure than E-Revision. An analysis

of the convergence patterns for both networks does not give anything conclusive on
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which operator, between UBCOBaN and E-Revision converges faster to the target BN

structure. However, the results though not conclusive, show that UBCOBaN returns

BN structures closer to the gold BN structure than E-Revision for both networks.

This seems to support the fact that the Belief Update component plays an important

role in the Unified Belief Change Model as hypothesised in the conceptualisation of

the Unified Belief Change Model.

We also further investigated the convergence of the Belief Bases towards the gold

BN structure. Figure 6.8 presents the results of the analysis. Generally, the Be-

lief Bases from UBCObaN seem to converge faster towards the gold BN structure.

However, just like the results obtained in Figure 6.7, the differences between the av-

erage SHDs of Belief Bases returned by UBCOBaN and E-Revision from the gold

BN structure for each run are not statistically significant, though Belief Bases from

UBCOBaN seem to be closer to the gold BN structures.

6.5 Discussion of Results

This chapter sought to establish whether the Unified Belief Change Model defined

in this thesis adheres to the principle of minimal change. This was investigated from

both the context of the Belief Bases and the best BN structures returned by the Belief

Change Models. UBCOBaN, an instance of the Unified Belief Change Model defined

in this thesis, was implemented and used to evaluate the model benchmarked on the

classical Search-and-Score algorithm implemented in Banjo.

The results obtained from the evaluation on Belief Bases showed that UBCOBaN

is more accurate in returning structural dependences in the process emitting the

data than Banjo as anticipated from the design of the Unified Belief Change Model

discussed in Chapter 4. The Structural Hamming Distance (SHD) of the Belief Bases

returned from the gold BN structure was however, higher than expected for the

HAILFINDER and the HEPAR II networks given their sizes. A similar pattern was

also observed for HAILFINDER and the HEPAR II networks on the SHD of the
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(a) ALARM Network

(b) ANDES Network

Figure 6.8.: Convergence of the Belief Change Operators based on the Belief Bases

best BN structures from the gold BN structures. Even though the SHDs for the

HAILFINDER and the HEPAR II network obtained in our work were higher than
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expected compared to the other networks used in our experiments given their sizes,

the values seem to be significantly lower than the SHD values obtained for the same

networks in related work (Lee & Kim, 2019; Zhao et al., 2015). In the work by Zhao

et al. (2015) on using Curriculum Learning for structure learning, the HAILFINDER

network had a SHD above 20 for a sample size of 10000 samples and the HEPAR

II network had an SHD above 40, compared to SHDs of 4.1 and 9.4 obtained by

UBCOBaN for the HAILFINDER and the HEPAR II networks respectively for the

same sample size. Lee and Kim (2019) investigated using the BN structure gleaned

from a human expert as prior knowledge to be revised using observed data. The

results obtained had much higher SHD values than those obtained in our work and

the work done by Zhao et al. (2015). For a sample of size 10000, an average SHD

above 100 was observed for the HAILFINDER network compared to SHDs of 4.1 and

10.8 obtained in our study for UBCOBaN and Banjo respectively. The lower SHDs

obtained in our results are more likely due to the fact that our experiments used prior

BN structures that may be much closer to the target BN structures than the the ones

used in (Lee & Kim, 2019; Zhao et al., 2015).

All the results obtained on the Structural Difference of the returned best BN struc-

tures from their corresponding prior BN structures showed that UBCOBaN returned

BN structures closer to the prior BN structures than Banjo. Thus, the proposed

Unified Belief Change Model was found to adhere to the principle of minimal change

better than Banjo. To the best of the researcher’s knowledge, there is no any previous

work that has explicitly investigated whether Bayesian Structure learning algorithms

adhere to the principle of minimal change. Thus, there are no any existing findings

in the existing body of knowledge that our findings can be compared to.

Showing that UBCABaN adheres to the principle of minimal change is not enough

for a Belief Change Model. It could be possible that the models achieve minimal

change at the expense of effecting a change where it is necessary. To this end, this

study investigated whether UBCOBaN is agile enough to change the BN structure
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when data inconsistent with the current structure is observed. This investigation was

done only on the ALARM and ANDES networks.

For the ALARM network not much difference was observed between the agility

of Banjo and UBCOBaN. However, an analysis of the standard deviation of the

distances of the the BN structures returned by both Banjo and UBCOBaN showed

that UBCOBaN converges faster to a BN structure closer to the target BN structure,

and then consistently returned almost the same BN structure for each run.

For the ANDES network, UBCOBaN was found to be both more agile and con-

sistent than Banjo. UBCOBaN ’s average SHD from the target BN structure was

found to be less than that of Banjo for all structures, from Str 8 down to Str 0.

The standard deviations calculated from the last 5 runs for each structure were much

smaller compared to those for Banjo.

From the foregoing discussion, it can be concluded that UBCOBaN adheres to

the principle of minimal change better than Banjo, at least in propositional Bayesian

Networks. It can also be concluded that it does so without compromising its agility to

change the BN structure when evidence not consistent with the current BN structure

is observed. The agility of UBCOBaN can be attributed to the Epistemic States and

the Belief Update component. Experiments carried out with a version of UBCOBaN

without the Belief Update component, E-Revision, showed that use of Epistemic

States significantly improves the rate of convergence of the returned BN structures

towards the target BN structures as the number of Belief Change iterations increase.

A comparison of the convergence of the BN structures from E-Revision to those of

BN structures from UBCOBaN did not show any statistically significant difference

between the two, but BN structures returned by UBCOBaN tended to converge much

closer to the target BN structure as the number of Belief Change iterations increase.

This serves as evidence that the update component is important to the Unified Belief

Change Model in order for the model to return BN structures that are closer to the

true model that is emitting the data. The update component of the model anticipates

the most likely transitions from one BN structure in the Belief State to another, and
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uses this anticipation to estimate the propensities of an edge being added, removed

or reversed for any hypothesised BN structure in the Belief State.

Previous work on theory refinement in Bayesian Networks is mainly restricted

to revising the BN structure. None of the works reviewed consider Belief Update.

Notable works towards theory refinement in Bayesian Networks include (Buntine,

1991; Friedman & Goldszmidt, 1997; Lam & Bacchus, 1994; Liu et al., 2018; Yu,

2019; Yue et al., 2015). Results obtained from the work by Friedman and Goldszmidt

1997 showed that keeping a set of high scoring Bayesian Networks as the epistemic

state to inform how the BN structure should be refined gives reasonably good BN

structures. Such a result is in agreement with the results obtained in this chapter. The

ability of a Search-and-Score algorithm that uses Epistemic States without Update

to perform better than the classical Search-and-Score algorithm was due to its use of

epistemic states.

The work by Yu (2019) follows a completely different approach to Belief Revision.

Instead of keeping a Belief State over high scoring BN structures, the solution keeps

the data from the previous iteration of belief revision. The work defined an Adaptive

tendency factor, ν, that would be used to determine how much of the overall score of

the BN structures should be contributed by new data. if ν > 0.5, the fitness between

current Bayesian Network and old data has a larger proportion in scoring function,

so the learning process trends to old data. if ν < 0.5, the fitness between the current

Bayesian Network and new data has a larger proportion in the scoring function,

so the learning process trends to new data. The results obtained showed that the

proposed solution outperforms the solution proposed by Friedman and Goldszmidt

1997. This is expected since the solution is in principle similar to the solution referred

to as the naive approach in (Friedman & Goldszmidt, 1997). Owing to the fact the

solution uses all the data that has been seen so far, it tends to give more optimal

BN structures. However, as stated in (Friedman & Goldszmidt, 1997), the solution

requires vast amounts of memory to store the entire corpus data. From a Belief
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Change perspective such a model will have a strong tendency of persisting beliefs

that are no longer acceptable longer than necessary.

The work reported in (Liu et al., 2018) presents a solution for incremental learning

of BN structures that only revises the substructures of the the current BN structure

that are inconsistent with the observed data. The work defined an influence degree

score that measures the variation of BN’s probability parameters with respect to the

likelihood of the new data. Only the sub-structures within the Markov blanket of the

nodes with high influence degrees would be revised. Ideally such a solution should

be able to find most of the conditional independences implied by the original BN

structure. The evaluation of the approach was done on the ASIA network and the

error rate on inference using the learned model was used as the evaluation metric.

The results obtained showed that the proposed solution can effectively be used for

revising BN structure in relevant applications. However, the study did not investigate

how the proposed solution will work in medium to large BN structures.

One of the major deviations UBCOBaN has from the classical structure learn-

ing algorithm is the use of modular priors for the hypothesised BN structures. As

mentioned in (Eggeling et al., 2019), even though a lot of work on Search-and-Score

structure learning highlights the importance of the structure prior component in the

score metrics, there are hardly any empirical studies that use the component with the

exception of (Eggeling et al., 2019; Talvitie, Eggeling, & Koivisto, 2018). Empirical

work on structure learning assumes uniform priors. The assumption is the effect of

the prior in the overall BN score diminishes with increases in the sample size. UB-

COBaN uses modular structures to compute the prior for any given BN structure. As

shown in the result obtained in (Eggeling et al., 2019) structure learning algorithms

that use modular priors return BN structures closer to the ground truth structures

than those that assume uniform priors. The use of modular priors was key to our

proposed model because it enabled the use of the Belief Update model proposed in

this study. Our results also show that use of modular priors performs better than

using uniform priors.



132

The next chapter, Chapter 7, investigates whether UBCOBaN can be used for

belief change in First Order Probabilistic Logic (FOPL). Multi-Entity Bayesian Net-

works, and instances of FOPL will be used for this evaluation. The evaluation process

to be followed will be the same as the one used in this chapter.
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7. BELIEF CHANGE IN MULTI-ENTITY BAYESIAN

NETWORKS

7.1 Introduction

The motivation to study Belief Change in the structure of Bayesian Networks in

this thesis emanated from the need for rational evolution of First Order Probabilistic

Knowledge representations. This chapter discusses how the developed Belief Change

Model was used for evolving structure in Multi-Entity Bayesian Networks (MEBN)

(Laskey, 2008). The chapter starts off by giving an overview of MEBN with respect

to how it conforms to the class of FOPL, and its peculiarities. This is followed by

a characterisation of the Structure Learning Problem in MEBN and how UBCOBaN

was used for evolving the MEBN structure. Lastly, the chapter discusses evaluation

of UBCOBaN for structure learning in MEBN and the findings thereof.

7.2 Overview of Multi-Entity Bayesian Networks

Multi-Entity Bayesian Networks (MEBN), like Bayesian Networks represent joint

probability distributions for a collection of interrelated random variables. The joint

probability distributions are captured by a graphical model, with nodes representing

uncertain hypotheses about the entities in the domain, and the edges representing

probabilistic dependencies between the hypotheses. However, propositional Bayesian

Networks have limited expressiveness to represent generic relationships between en-

tities. MEBN extends Bayesian Networks with First Order semantics to represent

knowledge about groups of entities and to reason about such knowledge.

Knowledge in MEBN is represented in a flexible modular way as a set of MEBN

Fragments, known as MFrags. A set of coherent MFrags is known as an an MEBN
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Figure 7.1.: An Example MTheory

Theory (MTheory). Each MFrag represents probability information about a set of

related random variables. The random variables are equivalent to First Order Logic

predicates or functions. They take arguments that refer to entities in the domain.

Each random variable in the MTheory must have exactly one (1) MFrag as its home

MFrag. The home MFrag for a random variable is the MFrag were its local distribu-

tion is defined.

An MFrag can have three (3) types of random variables. These are Resident, Input

and Context random variables. Resident nodes of an MFrag encode the probability

distribution local to the MFrag. The Input random variables correspond to the root

nodes in a given MFrag whose local distribution is defined in some other MFrag in

the MTheory. The context nodes represent the conditions that must be satisfied for

the dependencies and the local distribution represented in the MFrag to hold. Figure

7.1 shows an Example MTheory for the UW std relational dataset. Figure 7.2 shows

the legend for the different types of nodes defined in MEBN.
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Figure 7.2.: Legend for MEBN Nodes

7.3 The Belief Change Problem in MEBN

MEBNs, like Bayesian Networks have two (2) major components that are impor-

tant for knowledge representation namely, the graphical structure encoding depen-

dency structure between variables, and the probabilistic regularities characterising

uncertainty inherent in the domain. A Belief Change Operator for MEBN should

therefore seek to rationally evolve both the structure and the parameters for the

MEBN model. The Unified Belief Change Meta-Model defined in this thesis is generic

enough to handle both aspects of Belief Change in MEBN. However, this work only

focuses on rational Belief Change of the network structure.

In MEBN, just like in Bayesian Networks, there is no guarantee that the statistical

regularities of the random variables will be represented by one unique structure. It

is possible that, several arrangements of the random variables into the MEBN the-

ory could be encoding the same statistical regularities. This study did not consider

equivalences of the different arrangements of the variables in the algorithm for evolv-

ing MEBN structure defined in this work. Efforts to address the equivalences in the

different MEBN structures was left as part of future extension of the work reported
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in this thesis. Belief change as defined by the algorithm defined in this thesis seeks

to rationally evolve the arrangement of the variables in an MEBN theory and their

dependency structure into a structure that best explains variability in the observation

and the effect of the changes that could have possibly occurred in the domain. This is

exactly the goal of the Unified Belief Change Model for Bayesian Network Structures

defined in Chapter 4.

7.4 Using UBCOBaN in MEBN

Learning and evolving a BN Network Structure in First-Order Probabilistic Graph-

ical Models can not be easily done from flat data. Classical Bayesian Network struc-

ture learning works with “flat“ data representations. Such data does not capture the

relational structure that exists between the entities in the domain. The approach to

the structure learning problem in MEBN followed in this thesis is inspired by the

work presented in (Getoor, Friedman, et al., 2001; Park, Laskey, Costa, et al., 2013).

The relational schema is taken as background knowledge. The relational structure of

the schema is assumed to be static and there is no need for it to be revised and/or

updated. The Relational schema specifies all the entity types that have been observed

this far and the relationships between them. The MEBN-RM model defined in (Park,

Laskey, Costa, et al., 2013) that suggests how MEBN elements can be mapped to a

Relational Model (RM) is adopted.

7.4.1 The MEBN-RN Model

Park, Laskey, Costa, et al. (2013) defined an MEBN-RM bridge for matching

MEBN elements to Relational Model elements. MEBN-RN model defined in (Park,

Laskey, Costa, et al., 2013), defines 4 types of context nodes; the Isa, Slot− Filler,

V alue−Constraint and the Entity−Constrant context nodes. The adapted model

used in this thesis defined only one type of context nodes, the Isa type. The entity

table in RM is mapped to the Isa context node variable. It is important to note
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that a relationship table, whose primary key is composed of foreign keys does not

correspond to an Isa random variable. In this thesis, instead of mapping such a

relationship table to a context random variable as done in (Park, Laskey, Costa, et

al., 2013), the relationship table was mapped to a predicate resident random variable.

The value− constraint context and slot-filler context node type were not defined.

In MEBN, resident nodes can be described as a Function or Predicate. Predicates

in MEBN are Boolean random variables with possible values True and False. The

MEBN RM bridge used in this study maps attributes in a given entity or relation-

ship table to a function, and or Relationship tables to predicates. The arguments

to a predicate random variable are the entity types whose keys are making up the

primary key for the relationship table. The arguments to a function random variable

is the entity type for which the attribute is defined. Both predicates and function

are probabilistic and hence they should have a Conditional Probability distribution

associated with them.

7.4.2 Belief Change in MEBN

Inspiration for the proposed Belief Change algorithm for MEBN was drawn from

the work on structure learning in MEBN done by Park, Laskey, Costa, et al. (2013) .

The main difference between the structure refinement algorithm defined in this thesis

and the work by Park, Laskey, Costa, et al. (2013) is on the nature of the flattened

data used to refine the BN structure and how the structure learnt from relational

tables is handled. The discussion below shows how the algorithm defined in our work

works and how it differs from that of related work.

The algorithm starts off by identifying all the entity tables and Relation tables in

the database using the primary and foreign key structure of the tables. This will be

used to instantiate an MFrag for each table seen in the database. A default MFrag

is created to hold all the random variables that will be used as context nodes in the

entity and relationship MFrags. The relationship MFrags do not only have random
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variables from its corresponding table, but it will have data from entity tables and

other relationship tables it has relational links with. Thus, the data for learning

relationship MFrags is flattened data from quite a number of tables. Owing to the

fact that all the data in the entity tables may also be contained in one or more data

matrices for the relation tables, the researcher gave higher priority to the dependencies

learnt from relationship tables. Thus, a random variable will only be made a resident

random variable in an MFrag associated with its Entity Table if it does not have a

parent in any relationship MFrags. The algorithm for MEBN structure evolution is

shown in Algorithm 7.1.

7.5 Experiments

This section provides the evidence that the proposed Unified Belief Change Model

and its corresponding Operator can be used for Belief Change in the structure of a

MEBN model. To evaluate the performance of the proposed Belief Change model the

CORA, WebKP, UW std, and the Financial std benchmark Statistical Relational

Learning (SRL) datasets were used. First, the research aimed to establish that the

UBCOBaN Operator does not change the underlying network structure unnecessarily

even in the case of relational data. This investigation is similar to the one conducted

with propositional data except for the fact that, this time around relational data is

used. Second, the study aimed to establish that if the process emitting the data

being observed changes the developed Operator will accordingly evolve the structure

to reflect the process emitting the data. This is also similar to the process conducted

in the previous chapter to prove the agility of the model.

For all experiments that needed data simulation, the bnlearn1 package was used

for data simulation. The Rserve package2 was used to enable the java program to

communicate with R for data simulation.

1http://www.bnlearn.com/
2https://cran.r-project.org/web/packages/Rserve/index.html
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Algorithm 7.1 MEBN Structure Learning Algorithm

1: Input:DB, maxSlotChain, BNSL alg

2: Output:Mtheory

3: procedure BSL MEBN

4: Mtheory ← create a default MTheory

5: MFref ← create a default reference MFrag

6: EntityTables← create a list of all entity tables

7: for each table ∈ EntityTables do

8: entMFi ← create an empty MFrag for the table

9: entMFi ← add an Ordinary RV for the entity

10: relationshipTables← create a list of all relationship tables

11: JTList← joinTables(DB, relationshipTables,maxSlotChain)

12: for each JT ∈ JTList do

13: MFrel ← create an empty relationshipMFrag

14: relGk ← effect belief change for relationship MFrag using BNSL alg and

datak

15: relMFk ← convertDAGToMFrag(relGk, relMFk,MTheory)

16: for each each Entity MFrag entMFi ∈MTheory do

17: entRSi ← create a resultset from the remaining RVs in entMFi

18: datai ← persist the resultset into a data file

19: entGi ← effect belief change for the Entity MFrag DAG using BNSL alg

and datai

20: entMFi ← convertDAGToMFrag(entG, entMFi,MTheory)

21: for each MFi ∈MTheory do

22: MFi ← calculateParameters(MFi, DB,MTheory)

23: procedure joinTables(DB, relationshipTables, maxSlotChain)

24: for k = 0 untill relationshipTables.size() do

25: frgnKeysList← add all foreign keys in relationshipTable

26: relMFk ← create an empty relationship MFrag

27: MFref ← create an OV for each foreign table add it to MFref

28: relMFi ← add OVs to relMFi

29: RVpred ← create a predicate RV using OVs as arguments
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30: for s = 1 untill maxSlotChain do

31: JTi ← join all related tables in the range maxSlotChain

32: RSk ← create a resultset from the joint tables

33: Datak ← persist the resultset in a data file

34: JTList.add(JT )

35: procedure convertDAGToMFrag(DAG, MF , MTheory)

36: if MF ∈ relationshipTables then

37: for each node ∈ DAG do

38: if node is an RV in MF then

39: parentList← add all parent nodes of node

40: for each parentNode ∈ parentList do

41: node.add(parrentNode)

42: for each node ∈MF do

43: if node.getParents == 0 && node.getChildren == 0 then

44: if node is aa attibute in some entity table then

45: release the node to the entity MFrag

46: else

47: for each node ∈ DAG do

48: if node is an RV in MF then

49: parentList← add all parent nodes of node

50: for each parentNode ∈ parentList do

51: node.add(parrentNode)

52: procedure calculateParameters(MTheory, DB)

53: for each MFi ∈MTheory do

54: SQLStatement← create an SQL statement for all RVs in the MFrag

55: datai ← get data from DB using the SQl statement

56: MFi ← learn parameters from datai
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7.5.1 Benchmark Statistical Relational Learning Datasets

The benchmark relational datasets used in this set of experiments were categorised

as small, medium sized, and large dataset. The categorisation was done on the

basis of the number of relational tables that a dataset has. The WebKP dataset

(Craven et al., 1998) was originally constructed for learning computer understandable

First-Order Logic knowledge for the World Wide Web. The dataset consisted of

three (3) relational tables: webpage, content, and cites. The webpage table has

webpage URLs as the primary key and class of a webpage as the only attribute

for the table. The content table has two attributes the webpage id (as the primary

key) and word cited id. The cites table holds the citation network of the webpages.

The citation network consists of 1608 links. The CORA dataset is closely related

to the WebKP dataset, but instead of using webpages, it uses a citation network

of scientific research articles. The purpose of the CORA dataset (McCallum, 2017)

was to learn FOL knowledge for citation link prediction and multi-label classification

prediction. On the Medium-sized dataset, the UW-CSE dataset 3 was used. The UW-

CSE dataset describes an academic department (15 predicates; 1323 constants; 2673

ground atoms). This dataset lists facts about the Department of Computer Science

and Engineering at the University of Washington (UW-CSE). The main prediction

problem for the dataset is determining who is the advisor of who. The database has

four(4) tables; person, course, advisedBy, and taughtBy. Some related works that

have used this dataset include (Dinh, Vrain, & Exbrayat, 2012; França, Zaverucha,

& d’Avila Garcez, 2014). The Financial std dataset was used in the category of

large datasets. The dataset was used for the PKDD’99 Challenge. The dataset has

eight(8) tables holding data on 606 successful and unsuccessful loans.The target for

the Financial std dataset is to predict successful loans.

The SRL datasets are different from the benchmark propositional Bayesian Learn-

ing datasets, in the sense that the true network/FOL statements are not known. The

3https://relational.fit.cvut.cz/dataset/UW-CSE
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datasets are usually used to evaluate Inductive Logic Programming (ILP) solutions

based on how good the learned Inductive logic rules are at predicting unknown classes.

This will not be possible in our case since this thesis did not provide a solution for

learning the Conditional Probability tables for the learnt MEBN models. Since the

parameter learning is outside the scope of this thesis, further efforts in evaluating

the developed belief change model in MEBN through inferences will be considered

in future research efforts. Further to the foregoing, for the Belief Change problem in

FOPL, it is more appropriate to use Structural Distance than prediction accuracy.

This is due to the fact that it is possible for a FOPL model far away from the true

model (in terms of structural distance) to give more accurate prediction than mod-

els much closer to the true model. To this the end, the evaluation process followed

in evaluating propositional Bayesian Networks was used. Owing to the fact that the

ground truth Relational BN structures are unknown, accuracy of the returned MEBN

models based on the edges returned could not be evaluated. Hence only stability of

the algorithms was evaluated.

7.5.2 Evaluating the Stability of the Unified Belief Change Model on

FOPL

The experiments conducted here were meant to investigate the stability the Best

FOPL Bayesian Network structure. The results obtained from using UBCOBaN were

benchmarked against the results obtained from using Banjo to effect Belief Change.

The first set of experiments on evaluating the stability of the Belief Change Op-

erators was done as follows: First, a MEBN Theory was learnt from the original

benchmark relational datasets. This was necessary because the benchmark relational

datasets were originally meant for Inductive logic Programming and hence no First

Order probabilistic graphical model is provided. The dataset also does not give the

FOL statement from the dataset. The MEBN structures learnt from the data using
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the MEBN structure learning algorithm proposed in this thesis are shown in Figures

7.3 - 7.6

Figure 7.3.: CORA MTheory

Figure 7.4.: WebKP MTheory

The metrics used for evaluation were ME, EE, CED, ICED, SHD, Recall and

Precision. However, these metrics were measured comparing the current MTheory to

the prior MTheory. Stability of the Belief Change solution is evidenced by a very low

SHD and very high Recall and Precision.
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Figure 7.5.: UW std MTheory

For each MTheory, data was simulated using the Bayesian Network from each of

the MFrags in the Mtheory. 30 runs of Belief Change on the MTheory were conducted,

using the MTheory from the previous run as the Knowledge representation on which

Belief Change will be effected. 2000 samples were simulated for each run and the

structure search algorithm was run for a maximum of 2 minutes. The choice of 2

minutes was made after observing that owing to the small size of the MFrag DAGs,

the search process hardly gets to 2 minutes before exhausting all the possible graph

structures. The maximum number of DAGs to be returned by the searcher was set to

100. However, the number of DAGs found was hardly reaching 100. Table (7.1) below

shows the results obtained. The values recorded in Table (7.1) reflect the average of

the last 5 runs of incremental application of Belief Change from the MTheories shown

in Figures (7.3) to (7.6)

In all the relational schemas used in this study, UBCOBaN was found to return

MTheories that are closer to the prior network than Banjo. The differences in the
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Figure 7.6.: Financial std MTheory

SHDs from the prior network between the two models was more defined for large

MTHeories, UW std and Financial std. The results show that, UBCOBaN is more

stubborn than Banjo in terms of changing the dependence structure of the MFrags

in the MTheory.

For UW std, UBCOBaN deviated from the prior MTheory by 0.6 SHD units

compared to 7.2 SHD units for Banjo. For Financial std, UBCOBaN deviated from

the prior MTheory by 1.2 SHD units compared to 5 units for Banjo. The SHD,

Recall and Precision metrics show that UBCOBaN was found to be more stable and

adhered to the principle of minimal change much better than Banjo.
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Table 7.1.: Stability of the Operators based on the difference between the Best MTheory

and the prior MTheory: ME, EE, CED, CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

CORA 0 0.2 0 0.2 2 2 2 2

WebKP 0 0.2 0 0.2 3 2.6 3 2.6

UW std 0.2 3.4 0.4 3.8 14 9.8 14 9.8

Financial std 0.8 2.6 0.8 2.4 12.2 13.6 12.2 13.6

Table 7.2.: Stability of the Operators based on the difference between the Best MTheory

and the prior MTheory: SHD, Recall, Precision

SHD Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

CORA 0 0.4 1 0.93 1 0.93

WebKP 0 0.4 1 0.93 1 0.93

UW std 0.6 7.2 0.98 0.75 0.97 0.73

Financial std 1.6 5 0.916 0.85 0.913 0.86

Figure 7.7 shows the distribution of the SHDs of the best returned MTheories from

the prior MTheories. The results show that UBCOBaN consitently returned the same

MTheory for the small relatioanl shemas, CORA and WebKP. For the UW std and

the Financial std schemas, the SHDs had much lesser dispersion compared to those

from Banjo. This implies that UBCOBaN is a more stable Belief Change Operator

compared to Banjo.

7.5.3 Evaluating the Agility of the Belief Change Meta-Model on FOPL

To evaluate agility of the UBCOBaN in refining the MTheory relative to changes

in the domain, only the UW std and the Financial std datasets were considered. The

MTheories from the WebKP and the CORA datasets were too small to be considered

for these experiments.
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(a) CORA MTheory (b) WebKP MTheory

(c) UW std MTheory (d) Financial std MTheory

Figure 7.7.: Stability of Best MTheory Returned

Owing to the small sizes of the DAGs in the MFrags only three (3) DAGs were

synthetically created for each MFrag. The DAGs were characterised as follows:

Str 0 was the DAG learnt from the benchmark dataset. Banjo was used as the

structure learning algorithm. Str 2 was a DAG with no edges between any of its

nodes. Str 1 was a DAG with some edges in Str 0, but the total number of edges

was less than the number of edges in Str 0 and some of the edges in Str 1 were not

in Str 0. Only three (3) MTheories were created for each database schema owing to
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the small size of DAG in the MFrags. The DAGs for most of the MFrags were too

small to allow any latitude for creating more than 3 different DAGs. This is expected

for FOPL owing to the fact that the DAG for FOPL are much smaller than those

from their propositional counterparts.

For each MTheory, from MTheory 2 to MTheory 0, data was simulated using

MTheory i and 15 runs of incremental refinement of the MTheory would be carried

out. The MTheory from the previous run would be used as the prior MTheory

that would be refined using UBCOBaN or Banjo and the data simulated from the

target MTheory. The target MTheory could be MTheory 1 or MTheory 0. The

first run of the 15 runs for MTheory i would use the result from the last run from

MTheory (i− 1), as its initial structure. 2000 samples were simulated for each run,

and the search time for each MFrag in the MTheory was set to 2 minutes. Four (4)

experimental rounds of evolving the MTheories from MTheory 2 to Mtheory 0 were

conducted for each Operator. The metrics ME, EE, CE, CED, ICED CE, SHD, Recall

and Precision, measured against the target MTheory, were recorded. The aggregated

results are shown in Tables (7.3) to (7.6).

The results obtained for the UW std schema shows that UBCOBaN returned

MTheories that are closer to the target MTheories than Banjo. On MTheory 1

UBCOBaN had an average SHD of 5 units from the target MTheory whereas Banjo

had an SHD 6.67 units. On MTheory 0 UBCOBaN had an average of 0 SHD from the

prior MTheories. An Investigation into how fast the Belief Change solution converges

to the MTheories simulating the data on UW std showed that UBCOBaN converges

faster thanBanjo (see Figure 7.8). Figure 7.8 shows the analysis done onMTheory 0.

By run 13 UBCOBaN began to consistently return the MTheory simulating the data

whereas Banjo was still struggling to consistently return MTheories close to the

MTheory simulating the data.

The results obtained for the Financial std MTheory also showed better agility

for UBCOBaN. The MTheories returned by UBCOBaN were found to have a lower

SHD from the target Mtheory than those returned by Banjo for both MTheory 1 and
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Table 7.3.: UW std:Comparison of UBCOBaN against Banjo based ME, EE, CED, and

CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

MTheory 1 2.47 3.93 2.53 4.13 11 9.73 11 9.73

MTheory 0 0.27 1.53 0.27 1.47 13.07 12.53 13.07 12.53

Table 7.4.: UW std: Comparison of UBCOBaN against Banjo based SHD, Recall, and

Precision

SHD stdev(SHD) Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

MTheory 1 5 8.07 0.09 4.62 0.82 0.73 0.82 0.73

MTheory 0 0.53 3 1.4 3.53 0.98 0.89 0.98 0.89

Figure 7.8.: UW std: Convergence of the Evolving MTheory to the MTheory simulating

the data

MTheory 0. The standard deviations of the SHDs of the last 5 runs of the 15 runs per

MTheory showed that UBCOBaN consistently returned MTheories that are closer

to the target MTheories better than Banjo did. Figure 7.9 shows the convergence
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trends of the average SHD as the experiments move from the 1st run towards the 15th

for MTheory0. The figure shows UBCOBaN converges faster towards the MTheory

simulating the data than Banjo.

Table 7.5.: Financial std: Comparison of UBCOBaN against Banjo based on ME, EE,

CED, and CE

ME EE CED CE

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

MTheory 1 0.93 4.2 0.8 4.2 8.27 9.07 8.27 9.07

MTheory 0 0.4 4.53 0.73 4.4 13.6 9.8 13.6 9.8

Table 7.6.: Financial std: Comparison of UBCOBaN against Banjo based on SHD, Recall,

and Precision

SHD stdev(SHD) Recall Precision

UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo UBCOBaN Banjo

MTheory 1 1.73 8.13 2.31 4.6 0.89 0.76 0.900 0.76

MTheory 0 1.13 8.93 1.51 5.76 0.97 0.70 0.94 0.71

7.6 Discussion of Results

The experimental results presented in Section 7.5 show that UBCOBaN adheres to

the principle of minimal change better than the classical Search-and-Score algorithms

implemented in Banjo. The results were in the affirmative for all the benchmark

relational schemas considered in this study. For small relational schemas, CORA and

WebKP, UBCOBaN was faithful to the principle of minimal change so much that

none of the 30 runs conducted for each schema returned an MTheory deviating from

the prior MTheory. For the large relational schemas, UW std and Financial std,

UBCOBaN returned MTheories that slightly deviated from the the prior MTheory

at average SHDs of 0.6 and 1.2 for UW std and the Financial std respectively. This

is much less than the SHDs for the MTheories returned by Banjo which were 7.2 and

5 for UW std and Financial std respectively.
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Figure 7.9.: Financial std: Convergence of the Evolving MTheory to the MTheory simu-

lating the data

The results obtained from the experiments for evaluating the agility of UBCOBaN

in MEBN showed that UBCOBaN is more agile than Banjo. The average SHDs of

MTheories returned by UBCOBaN were closer to the target Mtheories than those

returned by the classical Search-and-Score algorithm implemented in Banjo.

There is not much work that has been done on theory refinement in MEBN except

for the work done by Park et al in (Park & Laskey, 2018; Park, Laskey, Costa, et al.,

2014, 2016; Park, Laskey, da Costa, et al., 2013), which considers the problem from a

Structure Learning perspective. The work presented in this thesis builds upon these

works. Our work has two (2) major deviations from Park et al (2014): (i) our model

models Existence Uncertainity (Getoor, Friedman, et al., 2002); and (ii) our MEBN

structure learning algorithm gives precedence to learning relational structure over

learning entity structure.

As highlighted in Section 1.3 of this thesis, no work has explicitly investigated

Belief Change in Probabilistic Graphical Models. Like most of the work on Structure

Learning in Statistical Relational Learning, the focus of the work by Park, Laskey,
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Costa, et al. (2014) is on learning structure rather than Belief Change in Structure.

Thus, the work does not assume existence of any structure priors, let alone the use of

Epistemic States in the Structure Learning process. Other related work on Structure

Learning in Statistical Relational Learning such as (Coutant, Leray, & Le Capitaine,

2014; Ettouzi, Leray, & Messaoud, 2016; Friedman, Getoor, et al., 1999; Getoor,

Friedman, et al., 2001, 2002; Popescul & Ungar, 2003) also do not assume any prior

knowledge on the structure of the First Order Probabilistic knowledge representation.

All the solutions investigated assume that the structure is being learnt from scratch.

Early work on Structure Learning in FOPL only considered attribute uncertainty.

That is, the uncertainty modelled in the FOPL was pertaining to the values of the at-

tributes. Further studies (e.g. Getoor, Friedman, et al., 2002) on structure learning

discovered that modelling structural uncertainty in FOPL improves the prediction

accuracy of the First Order Probabilistic Models. The work by Getoor, Friedman,

et al. (2002) proposed two types of structural uncertainty representation in Relational

data; Reference uncertainty and Existence Uncertainty. Reference Uncertainty mod-

els the process by which reference slots are selected from a given set, and Existence

Uncertainty models whether a relationship exists between any two objects. Owing

to the fact the results obtained in (Getoor, Friedman, et al., 2002) showed that a

model with Existence uncertainty seems to have better predictive accuracy than the

one with reference uncertainty on the WebKP dataset, our proposed Belief Change

Model models Existence Uncertainty. Due to the fact that we wanted to capture Ex-

istence Uncertainty, the proposed model learnt DAG in the Relationship Tables first

before learning the DAG for entity tables. Only variables that have not found space

in the relationship tables were made resident variables in the entity table MFrags.

Although evaluating the the Belief Change algorithm using predictive accuracy

of the refined theories is important to any work on structure learning in FOPL, it

does not however, enable one to evaluate how good a belief change algorithm is

based on Belief Change principles. It is possible that a model with a very large

structural distance from the true model may give better predictive accuracy than a
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model that is close to the true model. Thus, owing to the fact that we are interested

in Belief Change, Structural Hamming Distance was chosen to be the primary metric

for evaluating the proposed Belief Change model in MEBN.
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8. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This chapter summarises the discourse that was presented in this thesis, draws some

conclusions about the intuition and conceptualisation used to develop a Unified Belief

Change Model for dynamic computing environments based on the experiments carried

out in this study. It also highlights some possible extension of the work presented

in this thesis and other contemporary research that can be enriched by some of the

ideas developed in this thesis.

8.1 Summary

This thesis sought to address the problem of automatic evolution of Knowledge

representations for handling knowledge in Open and highly dynamic computing en-

vironments. Such a problem is both ontological and epistemological. This thesis

argued that to address such a problem there is a need for a Knowledge Representa-

tion framework that inherently handles uncertainty, which is pervasive in Open and

Dynamic Computing Environments. The thesis takes the position that FOPL is an

ideal KR approach to address the ontological aspects of the problem, and then goes on

to provide a solution for the epistemological aspect of the problem that pre-supposes

a FOPL KR framework.

Though a lot of research efforts in FOPL assume that the structural knowledge

comes from a Knowledge expert, techniques that have emanated from the field of

Statistical Relational Learning have the potential to provide solutions to addressing

the epistemological aspects of the problem. Evolution of Knowledge Representations

in classical logic has been widely studied under the auspices of Belief Change. This

thesis therefore extended the techniques that have emanated from the research in
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Belief Change in Cassical Logic and Statistical Relational Learning to come up with

a solution for Belief Change in FOPL.

Belief Change in Open and Dynamic Computing Environments requires that be-

liefs be changed in response to: (i) correction of mistaken beliefs about the domain;

and (ii) changes in the domain. In classical Belief Change, Belief Change resulting

from correction of mistaken beliefs is known as Belief Revision and AGM theory is the

most popular solution to the problem. Belief Change due to changes in the domain

is known as Belief Update. This thesis, developed a Unified Belief Change Model

that caters for both Belief Revision and Belief Update. Inspiration for the proposed

Unified Belief Change Model was drawn from the Unified Belief Change solution by

Boutilier (1998).

The Belief Change Model was conceptualised by first modelling the evolving

Bayesian Network structure as a dynamical system whose impetus for change is driven

by the occurrence of some events in the domain. The event semantics were used to

capture the Belief Update aspects of the model and conditinalisataion was used to

cater for Belief Revision. To ensure iterative Belief Change the model was defined

in such way that the prior knowledge used as input to a belief change process was

an Epistemic State capturing relative entrenchments of the BN structures and the

relative propensities of each and every edge in a given BN structure being given up.

The outcome of a Belief Change process is also an Epistemic State holding posterior

entrenchments of the BN structures and the propensities of the edges being given

up given some BN structure. The derived Belief Update model component of the

Unified Belief Change Model was formally validated by analogy using the Qualitative

Belief Change Model for Dynamic environments and theory of Partially Observable

Markov Decision Processes (POMDP). For the Belief Revision component, Baysian

Conditionalisation was used with the outcome of the Belief Update component being

used as the prior Epistemic State. It was also proven that the proposed Unified Belief

Change Model meets the postulates for revision of p-functions presented in (Boutilier,

1995).
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Apart from arguing the efficacy of the proposed belief change model from a theo-

retical standpoint, this thesis also provides empirical evidence for the same. A Belief

Change Operator, the Unified Belief Change Operator for Bayesian Networks (UB-

COBaN ), based on the proposed Unified Belief Change Model was developed. The

operator was then used to illustrate how the model achieves belief change using a

synthetic example with one (1) iteration of Belief Change. Further to the foregoing,

the Operator was implemented in java to enable empirical evaluation of the efficacy

of the model in both Propositional Bayesian Networks and in Multi-Entity Bayesian

Networks (MEBN). MEBN is a variant of FOPL we chose to use for evaluating the

proposed model for belief change in First-Order Probabilistic Knowledge Representa-

tion. The results obtained show that the proposed model adheres to the principle of

minimal change (principle information economy) better than if the classical Search-

and-Score algorithms were to be used to effect belief change both in propositional

Bayesian Networks and MEBN. The model was also found to be at least as agile as

the classical Search-and-Score algorithm for both propositional Bayesian Networks

and MEBN in instances where data inconsistent with the assumed network struc-

ture is observed. A statistical test on whether Belief Update significantly improves

rationality of the proposed Unified Belief Change Model on propositional Bayesian

Networks was inconclusive at 95% confidence interval. However, the results obtained

showed that the Unified Belief Change Model with Belief Update has superior perfor-

mance compared to the one without Belief Update, albeit not statistically significant.

8.2 Conclusions

This thesis presented the following arguments for addressing the problem of au-

tomatic evolution of Knowledge Representations in Open and Dynamic Computing

Environments:

1. There is a need for a KR framework that inherently deals with the epistemo-

logical aspects of automatic evolution of KRs,
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2. The automatic evolution of KRs problem can be modelled as a Belief Change

problem and it needs to cater for both Belief Revision and Belief Update,

3. Being Bayesian about Belief Change in KRs is one way of ensuring rational

evolution of Knowledge Representations.

The need for a Knowledge Representation framework that inherently deals with

epistemological aspects of automatic evolution of Knowledge Representation is one

one of the key deviations of the work presented in this thesis from other related work

on evolution of Knowledge Representations. Most work in this area are based on evo-

lution of OWL-based Knowledge Representations, commonly known as ontologies.

These representations have no mechanism for handling knowledge acquisition. Such

work treat the Knowledge Acquisition and the Knowledge Representation as separate

processes. Typically, Description Logic (DL) is used as the knowledge Representation

language and the ontology evolution process is thought of as a reconfiguration-design

problem (Stojanovic et al., 2003). With such a solution, automatic evolution of the

Knowledge Representation becomes impossible, owing to the knowledge acquisition

process being very time consuming and needing human intervention. This research

argued that First Order Probabilistic Logic is a natural candidate for Knowledge Rep-

resentation, if automatic evolution of Knowledge Representations is to be achieved.

This thesis provides evidence that FOPL based Knowledge Representation can be

automatically evolved using techniques from the field of Belief Change and Statistical

Relational Learning (SRL).

The solution for evolution of Knowledge Representations presented in this study

was based on the techniques that have emanated from the field of Belief Change in

Classical Logic. The experiments conducted showed that both Belief Update and Re-

vision are necessary for Belief Change. The Belief Update component of the solution

enabled the proposed Belief Change model to return BN structures that are much

closer to the true BN structure when data inconsistent with the prior BN structure is

observed than the E-Revision Operator and the classical Search-and-Score algorithm.
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The Belief Change solution presented in this thesis also builds on the ideas that

have emanated from Bayesian Inferences. Bayesian Inferences assume that any com-

plex system is dynamic and the structure and the parameters of a model needed to

explain variability in the domain are merely models and not necessarily the funda-

mental truth. Hence in Bayesian Inference the structure and the parameters can be

learnt in the form of probability distribution. By doing so, they can be kept flexible

and can be updated whenever new information is observed. This thesis provided evi-

dence that it is possible to be Bayesian about Belief Change in structure in Bayesian

Networks, and the key requirement like in any Bayesian Inferences environment is

being able to define a Belief State as a probability distribution over all possible ex-

planations/models. To ensure Iterative Belief Change in the graphical structure it

is necessary that an Epistemic State be used as input and that the result of a Be-

lief Change process should also be an Epistemic State. Using Epistemic States for

Belief Change resulted in a Belief Change Operator that consistently returns almost

the same graphical structure if data consistent with the prior structure is observed.

The inability of classical Search-and-Score structure learning algorithms to use epis-

temic states in the belief change process resulted in them struggling with consistently

returning BN structures that are close to the target BN structure.

The problem that this thesis addressed, can be thought of as part of the grand

problem of enabling computers to do Science. This is often referred to in literature

as the automatic theory refinement problem. The problem simply put is defined as:

given some domain theory and a set of observations, find an approximately minimal

set of necessary changes to the domain theory that results in the theory being able

to correctly explain variability in the observation (Ourston & Mooney, 1994). This

thesis postulated that First Order Probabilistic Logic is a natural choice for a rep-

resentational formalism for automatic theory refinement. FOPL inherently handles

the epistemological needs of theory refinement and does not assume infallibility of

the propositions postulated by the domain theory. Thus, the conceptual framework
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for automatic evolution of knowledge representations presented in this thesis is one

effort towards a theoretical framework for enabling computers to do science.

8.3 Future Work

Several promising areas of future research came out of this study. This section

discusses some of the limitations the Unified Belief Change Model for Bayesian Net-

works presented in this study and the possible extension that can be made on the

model in the future.

First, the current model was defined to deal with Belief Change in Structure alone

and not the parameters. The choice to look only at structure was deliberate owing

to the following reasons: (i) the parameter learning and by extension the parameter

refinement is assumed to be simpler and well studied problem; (ii) from a knowledge

representation perspective the parameters are thought to be not ontological but a

mere epistemological convenience for knowledge acquisition and inferences. However,

the researcher believes that for a complete theory refinement in Bayesian Network,

there is a need for it to be done also on the parameter, and the structure will only be

refined when the observations are now inconsistent with the structure. Future research

studies should therefore investigate when theory refinement at structure level should

be done. Having a parameter learning algorithm for FOPL will open up quite a

number of future research opportunities for the proposed model, which are discussed

in the next 3 paragraphs.

Since the datasets used for evaluation of the MTheories returned by UBCOBaN

are benchmark datasets for Inductive Logic Programming, whose evaluation is often

done through inferences, it would be desirable to do the evaluation through inferences.

This would have enabled UBCOBaN to be compared to the techniques that have

emanated from ILP in learning First Order Theories. However, such an evaluation

requires that the model parameters for the the MEBN model be defined.
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Some research works on Bayesian Structure Learning use the Kallback-Leibler(KL)

divergence and other related entropy-based metrics to evaluate how close the learned

structure is from the gold standard Bayesian Network Structure. The KL-divergence

can also be used to measure how much information is lost in moving from one dis-

tribution to the other. On the other hand the Kullback-Leibler has also been used

to evaluate the principle of minimal change in classical Belief Change work. It would

be a worth while research endeavour to investigate how entropy-based metrics, like

the Kullback-Leibler divergence, can be used both for ascertaining the principle of

minimal change and the evaluate the correctness of the evolved network, both in

propositional Bayesian Networks and First Order Probabilistic Logic. However, use

of such metrics will require that both the structure and the parameter of the model

be estimated. In future, the researcher will explore extension of the Belief Change

Model defined in this thesis to handle Belief Change in parameters of a Bayesian

Network and use of entropy-based structural difference metrics for evaluation.

Second, this thesis made an assumption that there is no missing data in the

sense that for any sample used for Belief Change each and every variable has a value

against it. Unfortunately, real-life data is usually incomplete. The major difficulty

with incomplete data is computational in nature. The missing data will now need to

be estimated, using patterns learned from other samples with complete data. This

implies that the samples are nolonger independent and the DBe metric can no longer

be given by the sum of the local terms. Thus, further research still needs to be

conducted on how the developed Belief Change Model can work with incomplete

data.

Third, the model was only defined for Directed FOPL. Literature on FOPL has

shown that undirected FOPLs are generic enough to represent all the knowledge that

can be represented by their directed counterparts. By extension of the above argu-

ment, a theory refinement solution defined for undirected FOPLs should be generic

enough to handle Belief Change in directed FOPLs. However dealing with undirected

models will add a lot of complexities to the Belief Change problem.
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A. XML Schemas and Files

A.1 Epistemic State Schema

1 <?xml version=” 1 .0 ” encoding=”UTF−8” ?>

2 < !−−

3 This schema d e f i n e s the data model f o r the ho ld ing the

4 Epistemic State f o r the Un i f i ed B e l i e f Change Model

5 −−>

6 <xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

7 xmlns : tns=” ht tp : //www. uzulu . ac . za /2013/ Epis temicState ”

8 elementFormDefault=” q u a l i f i e d ”

9 targetNamespace=” ht tp : //www. uzulu . ac . za /2013/ Epis temicState ”

10 xmlns=” ht tp : //www. uzulu . ac . za /2013/ Epis temicState ”>

11 <xs : e l ement name=”NetworkStructure ”>

12 <xs:complexType>

13 <xs : s equence>

14 <xs : e l ement name = ” va r i a b l e s ” minOccurs=”0” maxOccurs=”unbounded

”>

15 <xs:complexType>

16 <xs : s equence>

17 <xs : e l ement name = ” l a g s ” minOccurs=”0” maxOccurs=”

unbounded”>

18 <xs:complexType>

19 <xs : s equence>

20 <xs : e l ement name = ” edges ” minOccurs=”0”

maxOccurs=”unbounded”>

21 <xs:complexType>

22 <x s : a t t r i b u t e name = ”

parentVarIndex” type=” x s : i n t ”

/>

23 </xs:complexType>

24 </ xs : e l ement>

25 </ xs : s equence>

26 <x s : a t t r i b u t e name = ” lagIndex ” type = ”

x s : i n t ”/>

27 <x s : a t t r i b u t e name = ”parentCount” type = ”

x s : i n t ”/>

28 </xs:complexType>

29 </ xs : e l ement>

30 </ xs : s equence>

31 <x s : a t t r i b u t e name = ”varIndex ” type = ” x s : i n t ”/>

32 </xs:complexType>
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33 </ xs : e l ement>

34 </ xs : s equence>

35 </xs:complexType>

36 </ xs : e l ement>

37 <xs : e l ement name=” epistemicStateSchema”>

38 <xs:complexType>

39 <xs : s equence>

40 <xs : e l ement name =” Be l i e f S e t ”>

41 <xs:complexType>

42 <xs : s equence>

43 <xs : e l ement r e f = ”NetworkStructure ”/>

44 </ xs : s equence>

45 </xs:complexType>

46 </ xs : e l ement>

47 <xs : e l ement name =”BestNetworkStructure ”>

48 <xs:complexType>

49 <xs : s equence>

50 <xs : e l ement r e f = ”NetworkStructure ”/>

51 </ xs : s equence>

52 <x s : a t t r i b u t e name=”NetworkScore” type = ” xs :doub l e ”/>

53 </xs:complexType>

54 </ xs : e l ement>

55 <xs : e l ement name =” Be l i e f S t a t e ”>

56 <xs:complexType>

57 <xs : s equence>

58 <xs : e l ement name =” s t ru c tu r e ” minOccurs =”0”

maxOccurs = ”unbounded”>

59 <xs:complexType>

60 <xs : s equence>

61 <xs : e l ement r e f = ”NetworkStructure ”/>

62 </ xs : s equence>

63 <x s : a t t r i b u t e name=” p r obab i l i t y ” type = ”

xs :doub l e ”/>

64 </xs:complexType>

65 </ xs : e l ement>

66 </ xs : s equence>

67 </xs:complexType>

68 </ xs : e l ement>

69 <xs : e l ement name=”EdgesL ike l ihoods ”>

70 <xs:complexType>

71 <xs : s equence>

72 <xs : e l ement name = ”wVariables ” minOccurs=”0”

maxOccurs=”unbounded”>

73 <xs:complexType>



178

74 <xs : s equence>

75 <xs : e l ement name = ”WLags” minOccurs=”0”

maxOccurs=”unbounded”>

76 <xs:complexType>

77 <xs : s equence>

78 <xs : e l ement name = ”wEdges”

minOccurs=”0” maxOccurs=”

unbounded”>

79 <xs:complexType>

80 <x s : a t t r i b u t e name =

”WParentVarIndex”

type=” x s : i n t ” />

81 <x s : a t t r i b u t e name =

” edgeL ike l ihood ”

type =” xs :doub l e ”

/>

82 </xs:complexType>

83 </ xs : e l ement>

84 </ xs : s equence>

85 <x s : a t t r i b u t e name = ”wLagIndex”

type = ” x s : i n t ”/>

86 <x s : a t t r i b u t e name = ”

wParentCount” type = ” x s : i n t ”

/>

87 </xs:complexType>

88 </ xs : e l ement>

89 </ xs : s equence>

90 <x s : a t t r i b u t e name = ”wVarIndex” type = ”

x s : i n t ” />

91 </xs:complexType>

92 </ xs : e l ement>

93 </ xs : s equence>

94 </xs:complexType>

95 </ xs : e l ement>

96 </ xs : s equence>

97 <x s : a t t r i b u t e name = ”varCount” type= ” x s : i n t ”/>

98 </xs:complexType>

99 </ xs : e l ement>

100 </xs:schema>
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A.2 Epistemic State Except for the ASIA Network

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”yes ”?>

2 <epistemicStateSchema xmlns=” ht tp : //www. uzulu . ac . za /2013/ Epis temicState ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ” xs i : s chemaLocat ion=”

ht tp : //www. uzulu . ac . za /2013/ Epis temicState /home/banjo /Asia /xmlDir/

epistemicStateSchema . xsd”>

3 <Be l i e f S e t>

4 <NetworkStructure>

5 <va r i a b l e s varIndex=”0”>

6 < l a g s lagIndex=”0”/>

7 </ v a r i a b l e s>

8 <va r i a b l e s varIndex=”1”>

9 < l a g s lagIndex=”0”/>

10 </ v a r i a b l e s>

11 <va r i a b l e s varIndex=”2”>

12 < l a g s lagIndex=”0”/>

13 </ v a r i a b l e s>

14 <va r i a b l e s varIndex=”3”>

15 < l a g s lagIndex=”0”/>

16 </ v a r i a b l e s>

17 <va r i a b l e s varIndex=”4”>

18 < l a g s lagIndex=”0”>

19 <edges parentVarIndex=”2”/>

20 </ l a g s>

21 </ v a r i a b l e s>

22 <va r i a b l e s varIndex=”5”>

23 < l a g s lagIndex=”0”>

24 <edges parentVarIndex=”1”/>

25 <edges parentVarIndex=”3”/>

26 </ l a g s>

27 </ v a r i a b l e s>

28 <va r i a b l e s varIndex=”6”>

29 < l a g s lagIndex=”0”>

30 <edges parentVarIndex=”5”/>

31 </ l a g s>

32 </ v a r i a b l e s>

33 <va r i a b l e s varIndex=”7”>

34 < l a g s lagIndex=”0”>

35 <edges parentVarIndex=”4”/>

36 <edges parentVarIndex=”5”/>

37 </ l a g s>

38 </ v a r i a b l e s>

39 </NetworkStructure>
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40 </ Be l i e f S e t>

41 <BestNetworkStructure NetworkScore=”−6412.1211051169375”>

42 <NetworkStructure>

43 <va r i a b l e s varIndex=”0”>

44 < l a g s lagIndex=”0”/>

45 </ v a r i a b l e s>

46 <va r i a b l e s varIndex=”1”>

47 < l a g s lagIndex=”0”/>

48 </ v a r i a b l e s>

49 <va r i a b l e s varIndex=”2”>

50 < l a g s lagIndex=”0”/>

51 </ v a r i a b l e s>

52 <va r i a b l e s varIndex=”3”>

53 < l a g s lagIndex=”0”>

54 <edges parentVarIndex=”2”/>

55 </ l a g s>

56 </ v a r i a b l e s>

57 <va r i a b l e s varIndex=”4”>

58 < l a g s lagIndex=”0”>

59 <edges parentVarIndex=”2”/>

60 </ l a g s>

61 </ v a r i a b l e s>

62 <va r i a b l e s varIndex=”5”>

63 < l a g s lagIndex=”0”>

64 <edges parentVarIndex=”1”/>

65 <edges parentVarIndex=”3”/>

66 </ l a g s>

67 </ v a r i a b l e s>

68 <va r i a b l e s varIndex=”6”>

69 < l a g s lagIndex=”0”>

70 <edges parentVarIndex=”5”/>

71 </ l a g s>

72 </ v a r i a b l e s>

73 <va r i a b l e s varIndex=”7”>

74 < l a g s lagIndex=”0”>

75 <edges parentVarIndex=”4”/>

76 <edges parentVarIndex=”5”/>

77 </ l a g s>

78 </ v a r i a b l e s>

79 </NetworkStructure>

80 </BestNetworkStructure>

81 <Be l i e f S t a t e>

82 <s t r u c tu r e p r obab i l i t y=”0.03042598122991598 ”>

83 <NetworkStructure>
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84 <va r i a b l e s varIndex=”0”>

85 < l a g s lagIndex=”0”/>

86 </ v a r i a b l e s>

87 <va r i a b l e s varIndex=”1”>

88 < l a g s lagIndex=”0”/>

89 </ v a r i a b l e s>

90 <va r i a b l e s varIndex=”2”>

91 < l a g s lagIndex=”0”/>

92 </ v a r i a b l e s>

93 <va r i a b l e s varIndex=”3”>

94 < l a g s lagIndex=”0”>

95 <edges parentVarIndex=”2”/>

96 </ l a g s>

97 </ v a r i a b l e s>

98 <va r i a b l e s varIndex=”4”>

99 < l a g s lagIndex=”0”>

100 <edges parentVarIndex=”2”/>

101 </ l a g s>

102 </ v a r i a b l e s>

103 <va r i a b l e s varIndex=”5”>

104 < l a g s lagIndex=”0”>

105 <edges parentVarIndex=”1”/>

106 <edges parentVarIndex=”3”/>

107 </ l a g s>

108 </ v a r i a b l e s>

109 <va r i a b l e s varIndex=”6”>

110 < l a g s lagIndex=”0”>

111 <edges parentVarIndex=”5”/>

112 </ l a g s>

113 </ v a r i a b l e s>

114 <va r i a b l e s varIndex=”7”>

115 < l a g s lagIndex=”0”>

116 <edges parentVarIndex=”4”/>

117 <edges parentVarIndex=”5”/>

118 </ l a g s>

119 </ v a r i a b l e s>

120 </NetworkStructure>

121 </ s t r u c tu r e>

122 <s t r u c tu r e p r obab i l i t y=”0.030389117610693774 ”>

123 <NetworkStructure>

124 <va r i a b l e s varIndex=”0”>

125 < l a g s lagIndex=”0”/>

126 </ v a r i a b l e s>

127 <va r i a b l e s varIndex=”1”>
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128 < l a g s lagIndex=”0”/>

129 </ v a r i a b l e s>

130 <va r i a b l e s varIndex=”2”>

131 < l a g s lagIndex=”0”/>

132 </ v a r i a b l e s>

133 <va r i a b l e s varIndex=”3”>

134 < l a g s lagIndex=”0”>

135 <edges parentVarIndex=”2”/>

136 </ l a g s>

137 </ v a r i a b l e s>

138 <va r i a b l e s varIndex=”4”>

139 < l a g s lagIndex=”0”>

140 <edges parentVarIndex=”2”/>

141 </ l a g s>

142 </ v a r i a b l e s>

143 <va r i a b l e s varIndex=”5”>

144 < l a g s lagIndex=”0”>

145 <edges parentVarIndex=”0”/>

146 <edges parentVarIndex=”1”/>

147 <edges parentVarIndex=”3”/>

148 </ l a g s>

149 </ v a r i a b l e s>

150 <va r i a b l e s varIndex=”6”>

151 < l a g s lagIndex=”0”>

152 <edges parentVarIndex=”5”/>

153 </ l a g s>

154 </ v a r i a b l e s>

155 <va r i a b l e s varIndex=”7”>

156 < l a g s lagIndex=”0”>

157 <edges parentVarIndex=”4”/>

158 <edges parentVarIndex=”5”/>

159 </ l a g s>

160 </ v a r i a b l e s>

161 </NetworkStructure>

162 </ s t r u c tu r e>

163

164 . . .

165 . . .

166 . . .

167

168 <s t r u c tu r e p r obab i l i t y=”0.03025682906252734 ”>

169 <NetworkStructure>

170 <va r i a b l e s varIndex=”0”>

171 < l a g s lagIndex=”0”/>
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172 </ v a r i a b l e s>

173 <va r i a b l e s varIndex=”1”>

174 < l a g s lagIndex=”0”>

175 <edges parentVarIndex=”0”/>

176 </ l a g s>

177 </ v a r i a b l e s>

178 <va r i a b l e s varIndex=”2”>

179 < l a g s lagIndex=”0”/>

180 </ v a r i a b l e s>

181 <va r i a b l e s varIndex=”3”>

182 < l a g s lagIndex=”0”>

183 <edges parentVarIndex=”2”/>

184 </ l a g s>

185 </ v a r i a b l e s>

186 <va r i a b l e s varIndex=”4”>

187 < l a g s lagIndex=”0”>

188 <edges parentVarIndex=”2”/>

189 </ l a g s>

190 </ v a r i a b l e s>

191 <va r i a b l e s varIndex=”5”>

192 < l a g s lagIndex=”0”>

193 <edges parentVarIndex=”1”/>

194 <edges parentVarIndex=”3”/>

195 </ l a g s>

196 </ v a r i a b l e s>

197 <va r i a b l e s varIndex=”6”>

198 < l a g s lagIndex=”0”>

199 <edges parentVarIndex=”0”/>

200 <edges parentVarIndex=”5”/>

201 </ l a g s>

202 </ v a r i a b l e s>

203 <va r i a b l e s varIndex=”7”>

204 < l a g s lagIndex=”0”>

205 <edges parentVarIndex=”4”/>

206 <edges parentVarIndex=”5”/>

207 </ l a g s>

208 </ v a r i a b l e s>

209 </NetworkStructure>

210 </ s t r u c tu r e>

211 </ Be l i e f S t a t e>

212 <EdgesL ike l ihoods>

213 <wVariables wVarIndex=”0”>

214 <WLags wLagIndex=”0”>

215 <wEdges WParentVarIndex=”0” edgeL ike l ihood=” 0 .0 ”/>
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216 <wEdges WParentVarIndex=”1” edgeL ike l ihood=”0.03030158589207877 ”/

>

217 <wEdges WParentVarIndex=”2” edgeL ike l ihood=” 0 .0 ”/>

218 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 0 .0 ”/>

219 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 0 .0 ”/>

220 <wEdges WParentVarIndex=”5” edgeL ike l ihood=”0.030292563729169768 ”

/>

221 <wEdges WParentVarIndex=”6” edgeL ike l ihood=”0.030296752196502998 ”

/>

222 <wEdges WParentVarIndex=”7” edgeL ike l ihood=”0.06060030004553526 ”/

>

223 </WLags>

224 </wVariables>

225 <wVariables wVarIndex=”1”>

226 <WLags wLagIndex=”0”>

227 <wEdges WParentVarIndex=”0” edgeL ike l ihood=”0.1817424839006842 ”/>

228 <wEdges WParentVarIndex=”1” edgeL ike l ihood=” 0 .0 ”/>

229 <wEdges WParentVarIndex=”2” edgeL ike l ihood=”0.03030158589207877 ”/

>

230 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 0 .0 ”/>

231 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 0 .0 ”/>

232 <wEdges WParentVarIndex=”5” edgeL ike l ihood=” 0 .0 ”/>

233 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

234 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

235 </WLags>

236 </wVariables>

237 <wVariables wVarIndex=”2”>

238 <WLags wLagIndex=”0”>

239 <wEdges WParentVarIndex=”0” edgeL ike l ihood=” 0 .0 ”/>

240 <wEdges WParentVarIndex=”1” edgeL ike l ihood=”0.21205663846048245 ”/

>

241 <wEdges WParentVarIndex=”2” edgeL ike l ihood=” 0 .0 ”/>

242 <wEdges WParentVarIndex=”3” edgeL ike l ihood=”0.18167833270904585 ”/

>

243 <wEdges WParentVarIndex=”4” edgeL ike l ihood=”0.03025696376425163 ”/

>

244 <wEdges WParentVarIndex=”5” edgeL ike l ihood=”0.060559336582042184 ”

/>

245 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

246 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

247 </WLags>

248 </wVariables>

249 <wVariables wVarIndex=”3”>

250 <WLags wLagIndex=”0”>
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251 <wEdges WParentVarIndex=”0” edgeL ike l ihood=”0.06055838212248253 ”/

>

252 <wEdges WParentVarIndex=”1” edgeL ike l ihood=”0.03029088758862727 ”/

>

253 <wEdges WParentVarIndex=”2” edgeL ike l ihood=”0.818321667290954 ”/>

254 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 0 .0 ”/>

255 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 0 .0 ”/>

256 <wEdges WParentVarIndex=”5” edgeL ike l ihood=” 0 .0 ”/>

257 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

258 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

259 </WLags>

260 </wVariables>

261 <wVariables wVarIndex=”4”>

262 <WLags wLagIndex=”0”>

263 <wEdges WParentVarIndex=”0” edgeL ike l ihood=”0.03025696376425163 ”/

>

264 <wEdges WParentVarIndex=”1” edgeL ike l ihood=” 0 .0 ”/>

265 <wEdges WParentVarIndex=”2” edgeL ike l ihood=”0.9697430362357483 ”/>

266 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 0 .0 ”/>

267 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 0 .0 ”/>

268 <wEdges WParentVarIndex=”5” edgeL ike l ihood=” 0 .0 ”/>

269 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

270 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

271 </WLags>

272 </wVariables>

273 <wVariables wVarIndex=”5”>

274 <WLags wLagIndex=”0”>

275 <wEdges WParentVarIndex=”0” edgeL ike l ihood=”0.27271436698625406 ”/

>

276 <wEdges WParentVarIndex=”1” edgeL ike l ihood=” 1 .0 ”/>

277 <wEdges WParentVarIndex=”2” edgeL ike l ihood=”0.03030215397459654 ”/

>

278 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 1 .0 ”/>

279 <wEdges WParentVarIndex=”4” edgeL ike l ihood=”0.030296017273059552 ”

/>

280 <wEdges WParentVarIndex=”5” edgeL ike l ihood=” 0 .0 ”/>

281 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

282 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

283 </WLags>

284 </wVariables>

285 <wVariables wVarIndex=”6”>

286 <WLags wLagIndex=”0”>

287 <wEdges WParentVarIndex=”0” edgeL ike l ihood=”0.12113181404461136 ”/

>
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288 <wEdges WParentVarIndex=”1” edgeL ike l ihood=”0.15147144731735712 ”/

>

289 <wEdges WParentVarIndex=”2” edgeL ike l ihood=” 0 .0 ”/>

290 <wEdges WParentVarIndex=”3” edgeL ike l ihood=”0.1514685186788411 ”/>

291 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 0 .0 ”/>

292 <wEdges WParentVarIndex=”5” edgeL ike l ihood=”0.9697120006842175 ”/>

293 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

294 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

295 </WLags>

296 </wVariables>

297 <wVariables wVarIndex=”7”>

298 <WLags wLagIndex=”0”>

299 <wEdges WParentVarIndex=”0” edgeL ike l ihood=” 0 .0 ”/>

300 <wEdges WParentVarIndex=”1” edgeL ike l ihood=” 0 .0 ”/>

301 <wEdges WParentVarIndex=”2” edgeL ike l ihood=” 0 .0 ”/>

302 <wEdges WParentVarIndex=”3” edgeL ike l ihood=” 0 .0 ”/>

303 <wEdges WParentVarIndex=”4” edgeL ike l ihood=” 1 .0 ”/>

304 <wEdges WParentVarIndex=”5” edgeL ike l ihood=” 1 .0 ”/>

305 <wEdges WParentVarIndex=”6” edgeL ike l ihood=” 0 .0 ”/>

306 <wEdges WParentVarIndex=”7” edgeL ike l ihood=” 0 .0 ”/>

307 </WLags>

308 </wVariables>

309 </EdgesL ike l ihoods>

310 </ epistemicStateSchema>
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B. An Example R Scripts for simulating data in Propositional Bayesian

Networks

1 s imulateData = function ( ) {

2 l ibrary ( bnlearn )

3 a s i a<− read . b i f ( ”/home/edgar/Banjo/Asia/30 runs/ a s i a . b i f ” )

4 aData <−rbn ( as ia , 1000)

5 r e s = empty . graph (names( aData ) )

6 mode l s t r ing ( r e s ) = paste ( ” [ a s i a ] ” ,

7 ” [ smoke ] ” ,

8 ” [ tub | a s i a ] ” ,

9 ” [ lung | smoke ] ” ,

10 ” [ bronc | smoke ] ” ,

11 ” [ e i t h e r | lung : tub ] ” ,

12 ” [ xray | e i t h e r ] ” ,

13 ” [ dysp | bronc : e i t h e r ] ” ,

14 sep = ”” )

15 sim <−rbn ( res , 3000 , aData )

16 data <−as .matrix ( sapply ( sim , as .numeric ) )

17 write . table (na . omit (data ) , f i l e =”/home/edgar/Banjo/Asia/30 runs/ saveddf . txt ” ,

sep =”\ t ” , row .names = F, col .names = F)

18 }
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