

ACCOUNTING, PRICING AND CHARGING

SERVICES FOR GRID-BASED SERVICE

PROVISIONING ENVIRONMENT

Buthelezi Mcebo Elijah

(20022424)

(B.Sc. Hons. Computer Science)

A dissertation submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science,

Faculty of Science and Agriculture,

University of Zululand

2008

 i

DECLARATION

I declare that this dissertation on, Accounting, Pricing and Charging Services for Grid-based

Service Provisioning Environment is my work, and has never been presented or submitted in any

form for any degree or diploma in any university. All the sources of information used have been

duly acknowledged both in text and in the bibliography.

Signature________________________

 BUTHELEZI M.E.

 ii

DEDICATION

To my Mom

 iii

ACKNOWLEDGEMENTS

I am thankful to a number of people. Without their assistance and support, the outcome of this

research work would not have been nearly as good as it turned out. First and foremost, I thank

my supervisor, Prof M.O Adigun. Besides being a coauthor on the publications that came from

this work, he was always eager to discuss problems and ideas, and his constant enthusiasm and

positive spirit was a great source of inspiration.

I also thank O.O. Ekabua and J.S. Iyilade, my mentors for constructive comments, useful

criticisms and support.

My gratitude and special thanks also go to all my research colleagues. Over the years, we have

come to share a lot in common: research field, office, hostel rooms, thoughts, and laughter. It has

been a pleasure working together.

I also thank Sabathile Mkhwanazi for her words of encouragement and useful contribution.

I also take this opportunity to thank the staff members at the Department of Computer for their

friendliness and support.

Last but not least, I thank the ones I hold dear: mom, my brothers and sisters, relatives and

friends for cheering me up and for making my spare time a great pleasure.

Thank you all.

 iv

TABLE OF CONTENTS

DECLARATION .. i

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES ... vii

ABSTRACT ... x

CHAPTER ONE

INTRODUCION .. 1

1.1 Background... 2

1.2 Statement of the problem .. 5

1.3 Research Questions ... 6

1.4 Goal and Objectives .. 6

1.4.1 Goal ... 6

1.4.2 Objectives .. 6

1.5 Research Methodology .. 7

1.6 Research Contributions ... 8

1.7 The Structure of the Remainder of the Dissertation ... 9

CHAPTER TWO

BACKGROUND CONCEPTS ... 11

2.1 Overview of Distributed Computing ... 11

2.2 Service Oriented Computing ... 12

2.3 Grid Computing .. 14

2.4 Utility Computing ... 16

2.5 Software as a Service .. 17

2.6 Grid-Based Utility Infrastructure for Small, Medium and Micro Enterprises (SMMEs)-

enabling Technologies (GUISET) Architecture ... 18

2.7 Summary of the Chapter ... 20

CHAPTER THREE

LITERATURE REVIEW ... 21

3.1 The need for Usage Accounting, Pricing and Charging ... 21

3.1.1 Usage Accounting Approaches and Models in Grid Environment 21

3.1.1.1 Existing Usage Accounting Approaches .. 22

3.1.1.2 State of the Art in Usage Accounting in Grids ... 26

3.1.2 Pricing Grid Services ... 26

3.1.2.1 Pricing Schemes .. 27

3.1.2.2 Economic Models in Service Provisioning Environment 28

3.1.2.3 Existing Pricing Models for Service Provisioning Environment 31

3.1.2.3 State of the Art in Grid Services Pricing .. 35

3.1.3 Incentives and Charging Models in Distributed Computing 36

3.1.3.1 Incentive Approaches in Distributed Systems .. 37

3.1.3.2 Charging Models in Grids .. 39

3.1.3.3 State of the Art in Incentives and Charging Models for Grids 39

3.2 Summary of the Chapter ... 40

Table of Contents

 v

CHAPTER FOUR

MODEL DEVELOPMENT .. 41

4.1 Design Criteria for Usage Accounting, Pricing and Charging in GUISET 41

4.1.1 Custom GUISET Pricing Approach .. 42

4.1.2 Managed Robustness in Usage Accounting .. 42

4.1.3 Incentive-Compatible Charging for GUISET .. 43

4.2 GUISET Usage Accounting, Pricing and Charging System Architecture (GUAPCA) .. 43

4.2.1 Usage Accounting Service Component ... 45

4.2.2 Pricing Service Component .. 46

4.2.2.1 The Price-adjustment Mechanism (PAM) .. 47

4.2.2.2 Price Controlling Mechanism (PCM) ... 51

4.2.3 Charging Service Component ... 54

4.3 Summary of the Chapter ... 57

CHAPTER FIVE

SIMULATION AND RESULTS ANALYSIS .. 59

5.1 Description of the Simulation Environment ... 59

5.1.1 Simulation Setup .. 59

5.1.2 Performance Analysis... 61

5.2 Simulation Experiments .. 62

5.2.1 Experiment I: Market Forces and Price Controls .. 62

(a) The effect of market forces on market unit price ... 63

(b) The effect of price controls on market unit price .. 68

5.2.2 Experiment II: Effect of Incentive Based Charging ... 74

5.3 Summary of the Chapter ... 79

CHAPTER SIX

CONCLUSION AND FUTURE WORK .. 80

6.1 Conclusions .. 80

6.2 Future Work .. 82

BIBLIOGRAPHY .. 83

APPENDIX A: SIMULATOR SOURCE CODE .. 88

LIST OF FIGURES

Figure 2.1: Overview of Grid infrastructure ... 16

Figure 2. 2: An illustration of major functional components of a Service Oriented Architecture 14

Figure 2. 3: An overview of GUISET architecture .. 19

Figure 3. 1: Architecture for Metering and Accounting for Composite e-Services 23

Figure 3. 2: Fundamental Building Blocks of Grid Accounting System 24

Figure 3. 3: An Extended Posted Price Model with Grid Resource Supermarket 33

Figure 3. 4: An extended GRACE architecture with RPFM Module ... 34

Figure 3. 5: Taxonomy of Incentive Patterns .. 39

Figure 4. 1: GUISET Usage Accounting, Pricing and Charging System Architecture 45

Figure 4. 2: QoS-based Competitive Pricing Algorithm .. 51

Figure 4. 3: Price Evaluation Algorithm ... 53

Figure 4. 4: User Charging Algorithm .. 56

Figure 4. 5: User Rating Algorithm... 57

Figure 5. 1: Market Demand versus Market Supply for Best-Effort QoS 65

Figure 5. 2: Market Demand versus Market Supply for Control-Load QoS Class 66

Figure 5. 3: Market Demand versus Market Supply for Guaranteed QoS Class 67

Figure 5. 4: Recommended Market Unit Price versus Regulated Market Unit Price for Best-

Effort QoS Class... 71

Figure 5. 5: Recommended Market Unit Price versus Regulated Market Unit Price for Control-

Load Qos Class .. 72

Figure 5. 6: Recommended Market Unit Price versus Regulated Market Unit Pricef for

Guaranteed Qos Class ... 73

Figure 5. 7: Total amount versus discount amount for Best-Effort QoS Class 76

Figure 5. 8: Total amount versus discount amount for the Control QoS Class 77

Figure 5. 9: Total amount versus discount amount for Guaranteed QoS Class 78

 vii

LIST OF TABLES

Table 3. 1: Summary Evaluation of Pricing Models .. 36

Table 5. 1: Parameters and their default values for the simulation ... 61

Table 5. 2: Simulation parameters for Best-Effort QoS Class in Experiment I (a) 65

Tale 5. 3: Simulation parameters for Control-Load QoS Class in Experiment I (a) 66

Table 5. 4: Simulation data for Guaranteed QoS Class in Experiment I (a) 67

Table 5. 5: Simulation Data for Best-Effort QoS Class for Experiment I (b) 71

Table 5. 6: Simulation Data for Control-Load QoS Class for Experiment I (b) 72

Table 5. 7: Simulation Data for Guaranteed QoS Class for Experiment I (b) 73

Table 5. 8: Customer Ratings and Discounts ... 76

Table 5. 9: Simulation Data for Best-Effort QoS Class for Experiment II 76

Table 5. 10: Simulation Data for Control-Load QoS Class for Experiment II 77

Table 5. 11: Simulation Data for Guaranteed QoS Class for Experiment II 78

 viii

List of Acronyms

GUAPCA GUISET Usage Accounting, Pricing and

Charging System Architecture

ABC Activity-Based-Costing

ASP Application Service Provider

CA Charging Agent

CPU Central Processing Unit

CSUB Consumer-Service usage Bill

CSUR Consumer-Service usage Record

DGAS Distributed Grid Accounting System

e-Business electronic Business

e-Commerce electronic Commerce

e-Service electronic Service

GQoSM Grid Quality of Service Management

GRACE Grid Architecture for Computational Economy

GRM Grid Resources Meter

GRS Grid Resource Supermarket

GSAX Grid Service Accounting Extension

GTM Grid Trade Manager

GTS Grid Trade Server

GUISET Grid-Based Utility Infrastructure for SMMEs -

enabling Technologies

HLRs Home Location Registers

IT Information Technology

MACS Metering and Accounting Composite e-

Services

MOGAS Multi-Organization Grid Accounting System

OGSA Open Grid Services Architecture

PAM Price Adjusting Mechanism

PCM Price Controlling Mechanism

PREC Price Recommender

PREG Price Regulator

 ix

QoS Quality of Service

RPFM Resources Pricing Fluctuation Manager

RUR Resource Usage Record

SaaS Software-as-a-Service

SLA Service Level Agreement

SMMEs Small Medium and Micro Enterprises

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service Oriented Computing

SUR Service Usage Record

UDDI Universal

UM Utilization Monitor

URA User Rating Agent

WSDL Web Service Definition Language

MPRC Market Price Rate of Change

QCPA QoS Based Competitive Pricing Algorithm

UCA User Charging Algorithm

SUR Service Usage Record

RMP Regulated Market Price

SEM Service Evaluation Module

MRC

 x

ABSTRACT

The Grid computing idea has recently received widespread interest within the commercial

environment. However, in spite of progress made to introduce Grids into the commercial

environment, Accounting, Charging and Pricing of Service usage are still challenging issues.

Current Accounting, Pricing and Charging systems are inadequate because most of them are

based on a rigid and inflexible pricing and charging mechanisms.

In this study we address these challenges by proposing GUISET Usage Accounting, Pricing, and

Charging System Architecture (GUAPCA). GUAPCA is based on a competitive market

approach, where prices are determined by the forces of demand and supply. We also assume a

Grid Service market environment that is dynamic and, therefore, service providers and

consumers can join and leave the system at anytime. GUAPCA is comprised of three main

components namely - accounting, pricing and charging service components. The accounting

service component aggregates the service usage by specific users and consumers while the

pricing service component determines the price of services based on the market forces of

demand and supply. It further controls the market unit prices using market price limits set by the

delegated pricing authorities. Moreover, charging is achieved through an incentive-compatible

model where consumers are charged based on a combination of their reputation and actual

service usage.

We carried out simulation study of the GUAPCA system and evaluated its performance

experimentally using market efficiency and fairness of service price or charge as metrics. Our

simulation results showed that GUAPCA price adjusting mechanism conforms to the micro-

economic principle of determining the market unit price based on demand and supply. For

instance, when quantity supplied was 10 units and quantity demanded was 2 units, the market

unit price was decreased from $10.00 to $2.00 thereby encouraging more consumers for the

service. Also, our approach shows fairness in pricing and charging users. In a case where actual

cost of service usage was $260.00, a rebate of 10% was given based on the consumer's rating for

service usage hence, the actual charge reduces to $222.30.

We concluded that GUAPCA, as proposed in this research, is an efficient and fair mechanism for

pricing and charging service usage in a perfectly competitive Grid-based service provisioning

environment.

 1

CHAPTER ONE

INTRODUCION

As the Internet becomes ubiquitous and broadband access becomes commonplace, the

drive towards services within the Information Technology (IT) industry is gradually

taking shape. The Grid computing technology has been evolving beyond the borders

of research and academia, to becoming a key infrastructure for business collaboration

and enterprise application integration (Afgan and Bangalore, 2007; Huhns and Singh,

2005). Similarly, the utility computing business model is becoming a dominant

business model for providing on-demand access to Grid services within a commercial

environment. In the software industry, this has led to the notion of Software-as-a-

Service (SaaS).

In view of these trends, utilizing Web Services and Grid Services have emerged as

two complementary technologies facilitating the realization of service oriented

commercial Grid. As it should be expected, the move from product-orientation to

service-orientation within the software industry is already having significant impact

on applications (Vassiliadis, et al,2006), such as e-commerce, e-health, e-business,

thereby allowing more collaboration and coordinated resource sharing. Within the

service environment, service consumers can remotely access resources offered by

independent service providers and only pay for what is used. Usage accounting,

pricing and charging methodologies are, therefore, vital to the successful operation of

such service environments. Currently, most pricing and charging methodologies

employed are too rigid and inflexible to cater for the dynamic nature and high-level

customization required of service oriented commercial Grid. In this study, we present

usage accounting, pricing and charging mechanisms for service oriented commercial

Chapter One

 2

Grid. The pricing mechanism employs a competitive pricing approach with Quality of

Service (QoS) constraint, while charging is done with consideration of various

incentives for loyal and long-term consumers.

The rest of this chapter is organized as follows: In Section 1.1, the background of the

study is described. The problem that this work addresses is described in Section 1.2.

The research questions are presented in Section 1.3. The research goal and objectives

are presented in Section 1.4. The research methodologies and publication outputs are

listed in Section 1.5 and 1.6, respectively. The overall structure of the dissertation is

presented in Section 1.7.

1.1 Background

The rapid adoption of the Internet and broadband technologies worldwide has

tremendously increased the delivery of different online services (Reichl and Stiller,

2003; Narahari, et al, 2005; Jagamathan and Almeroth, 2004; Kannan, et al, 2008).

These developments have opened new opportunities for service provisioning through

the global information superhighway. We are now witnessing the emergence of new

infrastructure for collaboration and resource sharing through the Grid. In addition,

new service delivery models (Utility Computing and Software-as-a-Service) have

equally emerged to facilitate the delivery of IT services on a “pay-per-use” basis.

Although, the Grid idea was originally motivated by problems within the science and

academic community, its adoption of a service-oriented architecture through the Open

Grid Service Architecture (OGSA) is making it possible to apply the Grid ideas in

some other application domains requiring stateful and reliable services (Foster, et al,

2002b). It is, therefore, expected that Grid would find more application in commercial

environment by enabling a more stable infrastructure for service provisioning. In

Chapter One

 3

addition, the utility computing business model is evolving as the paradigm for

fulfilling computing needs and IT services (Rappa, 2004). It is a key to the adoption

of Grid in a commercial environment. In the utility business model, service providers

make resources and infrastructure management services available on-demand to

consumers and charge them per-usage rather than flat rates. It is a revolutionary

financial and technological model for delivering IT services, which is enabled by a

virtualized, optimized, scalable, fully automated and shared IT infrastructure like Grid

(Rappa, 2004). Yeo, et al,(2007) discussed the benefits of utility computing and how

it has changed IT in the past few years. Moreover, in the software industry, the idea of

on-demand delivery of services and management infrastructure has led to the concept

of SaaS. The goal of SaaS is the delivery of application software remotely through a

subscription-based fee model rather than an acquisition model.

Grid is an infrastructure that has the potential to exploit these service delivery models.

Grid infrastructure is described as a collaboration of different dispersed organizations

with the aim of sharing and coordinating physically distributed resource virtualized as

a single resource to the users (Yeo, et al, 2007). To realize virtualization in Grid, Grid

middleware systems like Globus, Condor, and Sun Grid Engine have been developed

in different Grid projects. The middleware systems are intermediaries between the

Grid service providers and consumers. Therefore, Grid middleware contain secondary

services such as usage accounting, pricing, charging, billing, monitoring, metering,

etc, that are required to manage Grid network and primary Grid services (Software

applications, CPU, storage space, etc).

In view of the on-going IT trends and emerging technologies, our research center has

proposed the Grid-Based Utility Infrastructure for Small Medium and Micro

Chapter One

 4

Enterprises (SMMEs)-enabling Technologies (GUISET) as an e-infrastructure that

will provide access to IT services as utilities to SMMEs. To enable variable costing

for Grid services, usage accounting, pricing and charging becomes essential aspects of

the GUISET Grid-based services. The lack of applicable, distributed and efficient

accounting schemes for commercial resource and service consumption has equally

been identified as an important open problem in most commercial grid environments

(Chowdhury, 2006). An accounting service aggregates the service usage by specific

users, while the charging service applies the service provider’s pricing schemes to the

accounting data, and generates bills for the users (Agarwal, 2003).

Pricing can be considered as an effective means to recover Grid service production

costs (input costs). In order to attract consumers, some service providers are offering

lowest prices for services, and this result in different prices for similar services. The

primary pricing scheme currently offered by service providers is a flat rate pricing

scheme that allows users to access a service for a monthly flat fee. Although, the

usage based pricing scheme exists, service providers mainly offer flat rate pricing

schemes. Pricing schemes should be such that consumers are allowed to select among

different set of services in a controlled manner (GÖhner, et al, 2007). The charging

model of a service defines its usage metrics and the basis on which users are charged.

Some services may use resource consumption measures; others may have pre-defined

costs per request, or a cost that varies predictably with certain parameters of the

request (Agarwal, 2003).

In the service oriented commercial Grid, service providers enter or depart the

environment any time and this has negative impact on QoS levels. Therefore, in the

service oriented commercial Grid, service consumers are more concerned about the

Chapter One

 5

level of QoS that a given Grid service provider offers in fulfilling the task/job

submitted. Thus, Service Level Agreements (SLAs) have been proposed (Czajkowski,

et al, 2004; Kounev, et al, 2007; Xiaorong, et al, 2008) as a mechanism to enforce the

QoS level that the service consumers and providers have agreed upon. The Grid

Quality of Service Management (GQoSM) proposed in Al-Ali, et al, (2003) have

three distinct features:

i. Support for resource and service discovery based on QoS properties.

ii. Support for providing QoS guarantees at the middleware and network level,

and establishing SLAs to enforce these.

iii. Providing QoS management on allocated resource based on a pre-negotiated

SLA.

In GQoSM, three QoS levels for Grid Services are identified. These are guaranteed,

controlled load, and best effort. This classification categorizes the Grid Services

according to their capabilities. In this study, we exploit this classification of services

in order to price service unit based on the QoS levels that service possesses.

1.2 Statement of the problem

The acquisition of IT resources such as storage space, Computer Processing Unit

(CPU), and software by SMMEs especially in developing countries is a daunting

problem. The high costs imposed on IT resources, infrastructure, and professionals

needed to maintain the IT resources make it difficult for SMMEs to survive in the

business environment (Vickery, et al, 2006; Guarise, et al, 2005). Thus, the GUISET

architecture is proposed partly to reduce these problems by enabling the provision of

the IT resources as services. Existing usage accounting, pricing and charging schemes

may probably not be suitable for GUISET environment. This is because GUISET

Chapter One

 6

services are to be delivered based on consumer’s specific QoS requirements, on an

on-demand basis, in a dynamic Grid environment. Therefore, usage accounting,

pricing and charging of services may be uncertain. This research addresses these

uncertainties of usage accounting, pricing and charging with regard to our GUISET

Grid research environment.

1.3 Research Questions

The research questions that were addressed by this dissertation are:

i. What pricing scheme is suitable for GUISET such that SMMEs can affordably

have access to IT services provided?

ii. How are the accounting-records supplied then mapped to the charging service

in GUISET?

iii. How can incentives be awarded to service providers and consumers in our

GUISET Grid environment?

1.4 Goal and Objectives

1.4.1 Goal

The goal of this research work was to develop a custom-made usage accounting,

pricing and charging services architectural framework and computational model for

GUISET.

1.4.2 Objectives

In order to realize the goal above, the following objectives were identified, which

were to:

i. investigation existing approaches to manage usage accounting, pricing and in

a Grid environment.

Chapter One

 7

ii. develop integrated system architectural model for usage accounting, pricing

and charging in GUISET.

iii. implement and evaluate the model as a proof of concepts.

1.5 Research Methodology

This research work used both theoretical and formulative approaches. To this end, a

number of research methodologies were pursued in the effort to realize the set

objectives of the research. The activities involved were:

a. Literature Review

Literature search on usage accounting, pricing and charging was conducted to

evaluate the work that other scholars had done. The search focused on how existing

scholarship formulated service usage accounting, pricing and charging, how the usage

data were collected from different service sites, how that data were stored, how

reports were generated, and how charges were calculated?

b. Formulation of integrated system model architecture

An architecture integrating, Usage Accounting, Pricing and Charging System

Architecture for GUISET (GUAPCA) was developed. First a number of design

criteria were identified then Algorithms and techniques for usage accounting, Pricing

and Charging services suitable for fulfilling the design criteria were developed.

c. Simulation Experiment

A simulator was developed in order to test the performance of GUAPCA as proof of

concept. The metrics used in order to verify the performance of GUAPCA were

efficiency and fairness. Several experiments were conducted in the simulator.

Chapter One

 8

1.6 Research Contributions

Given the research questions delineated in Section 1.3, our main goal was to develop

a custom-made usage accounting, pricing and charging services architecture for

GUISET. This was to particularly advance the state-of-the-art in usage accounting,

pricing and charging both to our GUISET research focus and other Grid-based service

provisioning environment.

Therefore, in meeting this goal, our main contribution to knowledge in this research is

the development of GUAPCA as a usage accounting, pricing and charging services in

GUISET. In the context of this architecture, we describe a number of strategies in

order to achieve a custom-made usage accounting, pricing and charging for GUISET.

The strategies are as follows:

1. We presented the design objectives for usage accounting service in GUISET.

Thereafter, we proposed two subcomponents that have complementary task to

handle service usage accounting in the service provisioning environment.

2. We further presented the pricing service that comprising of two main

algorithms: (i) recommend the unit price of the service based on the market

demand and supply with the consideration of the QoS constraints, (ii) evaluate

the recommended unit price of the service against the predefined market price

limits. The market price limits are preset to prevent the over-pricing and

under-pricing of the service unit.

3. Finally, we described the incentive-compatible charging approach that can be

expanded in order to enforce other policies such as SLAs.

This study has resulted in the following peer-reviewed publications:

 Buthelezi,M.E. Adigun,M.O. Ekabua,O.O. and Iyilade,J.S. (2008),

“Accounting, Pricing and Charging Service Models for a GUISET Grid-Based

Chapter One

 9

Service Provisioning Environment”, In Proceeding of the 2008 International

conference on E-learning, E-business, Enterprise Information system, and E-

government, USA, Page(s) 350 - 355. In this paper, we describe an SMME-

based enabling infrastructure technology called GUISET and present an

adaptive usage accounting, pricing and charging models to facilitate efficient

and effective service provisioning in our Grid-based service provisioning

environment (GUISET).

 Buthelezi, M.E. Iyilade, J.S. Adigun, M.O. (2008). “Dynamic Pricing and

Charging Models for Next Generation e-Services”, In proceeding of the 10th

Annual Conference on World Wide Web Applications, South Africa, 3-5 Sept

2008. The paper presents the requirements of pricing and charging in e-

services. Thereafter it proposes the pricing model that employs a competitive

pricing approach with QoS constraint, while the charging is done with

consideration of various incentives for loyal and long-term consumers.

The research publications presented above are a summarized usage accounting,

pricing and charging models descriptions and expanded upon by this dissertation with

the simulation results presented in chapter five. In order to guide the reader through

the remaining chapters, the following section contains a brief outline of the

dissertation structure.

1.7 Dissertation Outline

The remainder of the dissertation is organized as follows: In Chapter Two, we explain

foundation concepts of distributed systems that this research work builds upon. We

are particularly interested in the Grid paradigm.

Chapter One

 10

Following this, Chapter Three reviews the existing literature related to the key issues

addressed in this study: usage accounting, QoS constrained competitive pricing

approach, and incentive-compatible charging approach. In Chapter Four, we describe

the GUACPA system architecture and techniques that were used to accomplish the

objectives of this research work.

Next in Chapter Five, we present the simulation and results analysis of the system

architecture. We conclude in Chapter Six with a summary of our research and give

suggestions for future work.

 11

CHAPTER TWO

BACKGROUND CONCEPTS

This chapter presents the foundation technologies that this research work builds upon.

The background is divided into six main Sections. Section 2.1 presented an overview

of distributed computing. In Sections 2.2 – 2.5, we specifically discussed in detail the

Service Oriented Computing (Section 2.2), the Grid computing (Section 2.3), the

Utility computing (Section 2.4), and SaaS (Section 2.5). Section 2.6 presented

GUISET architecture, which is an architecture that intends to exploit the distributed

computing concepts that were described in Section 2.2 - 2.5. In Section 2.7, the

summary of the chapter is presented.

2.1 Overview of Distributed Computing

Historically, computer systems had undergone two major revolutions. The first was

the development of powerful microprocessors and the second one was the invention

of high-speed computer networks. As a result of these developments, distributed

systems have become a powerful tool for sharing resources to achieve high

performance in accomplishing different tasks. The paradigm of Distributed systems

has led to the following three types of distributed systems, namely distributed

computing systems (Cluster and Grid computing), distributed information systems and

distributed pervasive systems. Tanenbaum and Steen, (2007) discuss the four

important goals that should be met to make building a distributed system worth the

effort. A distributed system should make resources easily accessible; it should

reasonably hide the fact that resources are distributed across a network; it should be

open; and also be scalable. This study focuses more on Grid paradigm of

Chapter Two

 12

Distributed computing. Mattern, (2000) defined distributed computing as several

computers that communicate over a network to coordinate the actions and processes

of common application.

Distributed computing techniques have gained much interest in recent years due to the

proliferation of the Web and other Internet-based systems and services. The success of

Web services has influenced the way in which Grid applications are written (Patel and

Darlington, 2006). Web services (W3C, 2002) and Grid computing (Foster, 2002a)

are emerging complementary technologies towards realizing the service-oriented

promise. Whereas Web services technology and standards focus more on discovery

and invocation of services, Grid Computing addresses the issue of virtualization of

resources and their state management (Jacob, et al, 2005; Ramaswamy and

Malarvannan, 2006).

In the next Sections, Service Oriented Computing, Grid Computing, Utility

Computing and SaaS are briefly introduced as background concepts to this research.

2.2 Service Oriented Computing

Previously, the sharing of resources between distributed computers has been

considered thus it is not a new concept in itself (Tanenbaum and Steen, 2007; Galli,

2000). However, most early systems were built for special purposes and so they

usually employed ad hoc mechanisms in order to interoperate. This meant that

systems were inflexible, relied on static links between components and used

application specific protocols and data models (Huhns and Singh, 2005). Service

Oriented Computing (SOC) addresses these shortcomings by allowing services to be

discovered and invoked automatically at run-time (Papzoglou, et al, 2007) rather than

through manually specified and fixed application interfaces. Therefore, it has been

Chapter Two

 13

suggested as a suitable paradigm for distributed systems where many diverse software

components need to interact seamlessly. In this approach software functionalities and

other behaviors are offered by their providers as services over the network (Huhns and

Singh, 2005).

SOC is based upon an underlying Service Oriented Architecture (SOA). SOA is an

architectural approach whereby an application is composed of independent,

distributed and co-operating components called services. The services can be

distributed within or outside of the organizations physical boundaries and security

domains. The SOA has been successfully implemented using Web Services. Web

services are loosely-coupled, platform-independent, self-describing software

components that can be published, located and invoked via the web infrastructure

using a stack of standards such as Simple Object Access Protocol (SOAP), Web

Service Definition Language (WSDL), and Universal Description, Discovery and

Integration (UDDI) (Zhang, et al, 2007). Figure 2.2 provides a description of the

relationship amongst the major elements of SOA.

SOC is based on the elements of SOA, which are: loose coupling, implementation

neutrality, flexible configurability, persistence, granularity and teams (Huhns and

Singh, 2005). It supports the development of applications as if they were a connected

network of functionalities (services) available in a network-enabled environment,

within and across different organizations. Through the adoption of SOC, traditional

electronic-Commerce (e-Commerce) is giving way to the new service paradigm

referred to as electronic-Services (e-Services) (Vassiliadis, et al, 2006). Although, the

Grid idea was originally motivated by problems within the science and academic

community, its adoption of a SOA through the OGSA is making

Chapter Two

 14

Figure 2. 1: Service Oriented Architecture

it possible to apply the Grid ideas in some other application domains requiring stateful

and reliable services (Foster, et al, 2002b).Therefore, Grid computing has become a

key infrastructure for business collaboration and enterprise application integration.

Utility computing has become its business model for providing services on-demand

(Rappa, 2004; Huhns and Singh, 2005). In the software industry, this has led to the

notion of SaaS. In the following Sections we discuss Grid Computing.

2.3 Grid Computing

Grid computing (Foster, et al, 2002a), is concerned with “coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organizations.”

Srinivasan and Treadwell (2005) also defined Grid computing as a form of distributed

computing in which the use of disparate services such as compute nodes, storage,

applications and data, spread across different physical locations and administrative

domains, are optimized through virtualization and collective management.

Chapter Two

 15

Therefore, in a Grid Computing network, services and resources are made readily

available to consumers, analogous to electrical power and other public utilities. The

services are consumed efficiently and securely with minimal human intervention

(Parashar and Lee, 2005; Papzoglou, et al, 2007) during service composition,

discovering, selection, and so forth. The SOC is the paradigm which enables the

provision of services.

The move of Grid computing from academia and scientific research to the mainstream

of enterprise applications (Nadiminti and Buyya, 2005) has resulted in challenges

such as; regulation of service usage, transaction management, usage accounting,

pricing of services and charging for consumers for service usage. However, deciding

the appropriate pricing of services in the service market is a non-trivial issue. For

example, in a Grid environment, a major issue is how to obtain the information on

demand and supply of resources, which invariably have a great impact on service

prices. In addition, Grid systems are dynamic, in the sense that both service providers

and consumers can join and leave at their own desires. So market demand and supply

of services are dynamic and stochastic (Zhao, et al, 2007).

Grid service providers are decentralized and heterogeneous, belonging to different

organizations. Consumers from different regions harness these services. As shown in

Figure 2.1, assuming organizations A, B, C, and D formed a Grid, the organizations

are not physically connected or located in the same geographical environment, but

they are able to share the services they own with one another. For example,

Organization A may access resources owned by organization B for a particular period

of time. It is, therefore, crucial to ensure that necessary coordination schemes are in

Chapter Two

 16

Figure 2.2: Overview of Grid Infrastructure: Grids allow resources to be shared

across organizational boundaries (Srinivasan and Treadwell, 2005)

place such that the Grid functions well and meet its primary purpose of sharing

geographically dispersed resources.

Utility computing and SaaS are models that are exploited in Grid computing. In the

next Sections we discuss these models.

2.4 Utility Computing

Utility computing is a service provisioning model where service providers make

computing resources and infrastructure management available to the service

consumers on-demand and charge them for usage. It is a revolutionary financial and

technological model for delivering IT services, which is enabled by virtualized,

optimized, scalable, fully automated and shared Grid. According to Rappa (2004), this

service provisioning model is envisioned to be the next generation in IT evolution that

Chapter Two

 17

depicts how computing needs can be fulfilled in the future IT industry. As a service

provisioning model, it advances the capabilities of distributed system to both service

providers and consumers.

2.5 Software-as-a-Service

The concept of SaaS supported by SOC is revolutionary and appeared first with the

Applications Service Provider (ASP) software model (Vassiliadis, et al, 2006).

Therefore, in the software industry, the idea of on-demand delivery of services and

management infrastructure has led to the trend towards SaaS. The goal of SaaS is the

delivery of application software remotely through a subscription-based fee rather than

being sold for perpetual use. The users do not buy the license of the software, but only

a right to use it. Therefore, SaaS is the model in which application software is

delivered remotely through a subscription-based fee rather than being sold for

perpetual use (Goldi, 2007; Li, et al, 2008). A user may subscribe to all the features or

functionalities or just some of them for use. The applications are hosted in a data

centre and maintained by the service provider (Anerousis and Mohindra, 2006). The

characteristics of the SaaS model are as follows:

i. A multi-tenant design where an instance of the application accommodates

multiple users or even multiple resellers of the service with each reseller

serving its own pool of users.

ii. A charging model where customers pay for the services on a metered basis.

iii. Support for all the functions necessary to provide the application as a service.

iv. High level of application customization to avoid major implementation and

integration costs.

SaaS enables the software industry to deliver customized software applications to

different consumers over the network.

Chapter Two

 18

2.6 Grid-Based Utility Infrastructure for Small, Medium and Micro

Enterprises (SMMEs)-enabling Technologies (GUISET) Architecture

In view of the capabilities that distributed computing possesses, our research centre

(Adigun, et al 2006) proposed GUISET architecture shown in Figure 2.2. GUISET is

an architecture that aims at providing distributed services such as application

software, storage, and CPU capabilities as utilities.

This is envisioned as an approach that can provide an affordable access to services

deployed in Grid environment. The SMMEs, who lack their own internal IT

infrastructure, are prominent beneficiaries of such a service provisioning environment

as they will have access to the IT services available on-demand. There is no longer the

need for them to invest heavily or encounter difficulties in building and maintaining

internal IT infrastructure as these will be available on-demand.

The fundamental component of this GUISET architecture is a pool of Grid Services.

The Grid Services are high-level services composed by the multiple lower level

services provided by distinct independent distributed organizations. All the Grid

Services are integrated seamlessly into the GUISET based environment to form and

support the running of applications tasks, jobs which are submitted to the middleware

layer (utility broker). The service management strategies are the key to GUISET. For

an efficient and effective service management, the following service management

strategies need to be investigated for GUISET:

Chapter Two

 19

Figure 2. 3: An overview of GUISET architecture (Adigun, et al, 2006)

i. Dynamic Service Composition and Selection, SLAs and Workflow

Management – to automate and dynamically manage the entire end-to-end

application lifecycle of interlinked stages with policy enforced across

organizations.

ii. Monitoring, Metering Services - the monitoring services keep track of how

services and resources are performing, while the metering services

accommodate end-to-end resource consumption measurements.

iii. Accounting, Pricing and Charging Services – accounting service provide the

mechanism for service providers to be paid for authorized use of their

services. It supports the recording of usage data, analysis of that data for the

purposes of charging. Pricing service provides the mechanism to fix prices

for the services based on their market demand, supply and QoS. Charging

Chapter Two

 20

service computes the total bill for service consumer based on service(s)

consumption, and award incentive to those who may qualify based on

determined policies.

From the perspective of this work; these are some of the strategies that are needed in

GUISET. This research work provides solution to how the accounting, pricing and

charging services can be formulated and implemented in GUISET service

provisioning environment.

2.7 Summary of the Chapter

This chapter presented the background distributed computing concepts that are related

to this research work. GUISET architecture has also been described as the background

of this research.

 21

CHAPTER THREE

LITERATURE REVIEW

In this chapter we review the existing literature related to the key issues addressed in

this dissertation. In Section 3.1, we review the literature on existing approaches and

models for usage accounting, pricing and incentive based charging model and some

research efforts towards addressing the challenges of usage accounting, pricing and

charging model for the distributed computing environment is presented. In Section 3.2

we present the summary of the chapter.

3.1 Usage Accounting, Pricing and Charging Approaches and Models

The management of services in distributed computing environment, specifically Grid

computing has become a critical issue as it becomes the medium for electronic-

Business (e-Business). The current solutions do not address the challenges that are

emanating from the commercialization of Grid. Thus, issues such as service usage

accounting, pricing and incentive based charging of services need to be addressed to

enhance the resource management techniques for commercial Grids. In this Section,

the works that have been done towards addressing these issues are presented.

3.1.1 Usage Accounting Approaches and Models in Grid Environment

Service usage accounting in a commercial Grid environment enforces proper resource

management. Thus, Gardfjäll (2004) described usage accounting system as a system

that should provide data to do the following:

i. form the basis for economic compensation.

ii. used to enforce Grid resource allocation.

iii. allow the tracking of resource usage and jobs submitted, and

Chapter Three

 22

iv. enable the dynamic allocation of resources based on the priority and

reputation of the user.

These make usage accounting to be an important component of commercial Grid

usage. Therefore, usage accounting forms a crucial part in seeking compensation for

service usage by consumers.

3.1.1.1 Existing Usage Accounting Approaches

 Agarwal, et al (2003) proposed an architecture for metering and accounting for

composite e-Services (MACS) that provided an accounting, metering, billing, and

monitoring components. MACS supports metering at request-level granularity thereby

formulating a distributed accounting architecture that is scalable and supports service

independence. Within this architecture, a particular service usage is expressed using

application-level parameters rather than server-side resource usage metrics. This

provides some trustworthiness between a service provider and consumers because the

metering records are real-time managed. Furthermore, the service providers easily

classify service consumption records. The architecture also supports service

independence. Figure 3.1 shows an overview of MACS, with S1-S5 services fulfilling

the request of the user, metering records from each service are mapped to the

classifier which aggregates them to the database.

GÖhner, et al (2007) also, proposed an accounting model for dynamic virtual

organizations in a Grid environment. This model adopts an Activity-Based-Costing

(ABC) accounting approach. Within their model, the authors identify the costs of the

service following an hierarchical approach, that is, from a parent service to the child

services, the services are composed to accomplish any given task or job. The final

costs in this model include the administration costs. Although, the accounting model

Chapter Three

 23

Figure 3. 1: Architecture for Metering and Accounting for Composite e-Services

(Agarwal, et al, 2003)

proposed by these authors provided the possibility to bridge concepts of the

Traditional Cost Accounting system and ABC accounting, it does not elucidate how

the service’s usage data is going to be gauged from the distributed, heterogeneous

service provisioning environment and how the usage data is mapped to respective

service providers. Therefore, there is a high possibility that service providers and

consumers take advantage of each other.

Lim, et al (2005) proposed a Multi-Organization Grid Accounting System (MOGAS)

that supports a multi-organization environment like the commercial Grid. The authors

acknowledged the importance of proper management and usage accounting on

resource spanning across dispersed organization. The lack of standardization of usage

accounting in a multi-organization environment like Grid motivated the authors.

Chapter Three

 24

Figure 3. 2: Fundamental Building Blocks of Grid Accounting System (Lim, et al,

2005)

Thus, their accounting system architecture focuses more on the building blocks of any

usage-based accounting system. Figure 3.2 shows how the underlying components of

a usage-based accounting system interact with each other such that a usage accounting

record is created with minimal difficulties.

The Grid Service Accounting Extension (GSAX) (Beardsmore, et al, 2002) was

proposed to provide a modular approach accounting framework. The GSAX

framework can be expanded by adding or changing the core components to suit the

environment where it is applied. Furthermore, the underlying accounting system

allows for accounting to be carried out at various application levels and they provide

information at different degree of granularity. Another aspect of this theoretical

framework is the possibility to integrate QoS parameters and SLAs at different levels

Chapter Three

 25

of the accounting framework. It makes provision for economy based QoS and SLAs

to be implemented at the accounting level.

The underlying accounting subcomponent comprises two basic services: the account

management service, which provides accounting-related information, and accounting

records to higher-level components via adequate interfaces and accounting service

which handles metering events. Thereby establishing interfaces with the lower level

components of the framework. The accounting management and accounting service

hold an instance of an account, which contains information about the current balance

and the list of users authorized to use the account.

Barmouta and Buyya (2003), driven by the challenges of Grid accounting, proposed

an infrastructure called the GridBank that provides accounting services for a grid

environment. Gridbank is a secure accounting and payment handling system which

maintains the user’s accounts and resource usage records in the database. The work of

these authors emphasizes the importance of proper resource management systems by

including some payment mechanism.

Another relevant work was the Distributed Grid Accounting System (DGAS)

(Guarise, et al, 2005), designed to support an economy-based approach usage

accounting in order to regulate the distribution of Grid resources amongst authorized

Grid users and implement resource usage metering, accounting and account balancing

in a distributed Grid environment. The consumption of Grid resources by Grid users is

registered in Home Location Registers (HLRs), which are responsible for managing

both user and resource usage accounts. Furthermore, the HLRs have the capability to

facilitate communication between different HLRs. They are also able to credit or

debit different users or resource owners’ accounts for the respective amount of

Chapter Three

 26

resource usage. These usage accounting systems show how the different accounts

need to be credited or debited. Additionally, they only allow authorized users to

access Grid resources, which make them even more trustworthy to service consumers

and service providers. Pettipher, et al (2007), discussed the different usage accounting

systems which have been developed and applied in various computational Grid

project worldwide. The authors’ discussion shows how important usage accounting is

for accountability in resource usage in the Grid environment.

3.1.1.2 State of the Art in Usage Accounting in Grids

Usage accounting forms the basis for economical compensation and management of

service usage in a commercial Grid environment. Currently proposed mechanisms are

the foundation for usage accounting services that need to be customized and extended

to meet the usage accounting for commercial setting of Grid such that services usage

are traceable and easily evaluated. In this study we proposed a customizable usage

accounting mechanisms that focuses more on tracing service usage by service

consumers in order to enable the usage based incentive compatible charging of

services.

3.1.2 Pricing Grid Services

Pricing a service is one of the important processes in a market. The price of the

service influences its market supply and demand and vice versa. Therefore, price

plays an important role in influencing user’s preference for services. In order to

determine the price in a Grid environment, Yeo and Buyya (2007) outlined the

following four essential requirements for defining a pricing function for Grid:

i. The need for flexibility in the pricing function to help resource owners for

easy configuration.

Chapter Three

 27

ii. Fair pricing function to enable resources to be priced based on actual units

consumed by users.

iii. The need for dynamic pricing functions such that the price of each resource is

not static and can change depending on operating condition.

iv. The pricing function should be adaptive to changing supply and demand of

resources so as to compute the relevant price accordingly. As an example, if

demand for resource is high, the price of the resource should be increased so

as to discourage users from overloading this resource and to maintain

equilibrium of supply and demand of resources (Yeo and Buyya, 2007).

In the following sub-Section 3.1.2.1, we discuss flat rate and usage pricing schemes.

These pricing schemes have been used as the mechanism to overcome the pricing

challenge associated with trading Grid resources or services.

3.1.2.1 Pricing Schemes

(i) Flat rate Pricing

Blefari-Melazzi, et al (2003) discuss flat rate and usage based pricing in the case of

the Internet. For example, the flat rate pricing scheme:

i. is very simple and does not need any additional accounting architecture;

ii. allows consumers and service providers to have an accurate idea of costs

and revenues, respectively; and

iii. promotes unrestricted use of services by consumers.

At the same time, it has some serious disadvantages and drawbacks namely:

i. Service charges do not depend on the usage of service, so it penalizes light

consumers as compared to heavy ones (Blefari-Melazzi, et al, 2002).

Commented [M1]: Definr Flat rate pricing

Chapter Three

 28

ii. It is not an efficient pricing scheme from economic point of view; as it

does not provide the possibility to pay on basis of the perceived QoS.

iii. It does not favor service efficiency, but it encourages resource waste and

therefore, it does not guarantee high resource utilization.

(ii) Usage-Based Pricing

The usage-based pricing is the pricing scheme where consumers are charged based on

the actual usage of a service. The advantages of usage-based pricing scheme are:

i. Consumers are charged based on their actual resource usage; therefore, it is

fair to all consumers, light and heavy.

ii. Consumers are able to monitor the service usage cost without limitations to

service usage.

iii. It promotes high resource utilization amongst consumers. However, it has the

disadvantage that it is not easy to implement in the service provisioning

environment.

In addition, Chowshury (2006) emphasized that the usage-based pricing should be fair

so that it allows consumers to monitor their resource usage and to pay according to

their QoS specifications. Therefore, we adopt usage based pricing scheme for

GUISET as it is the pricing scheme that allows consumers to specify their QoS

requirements.

3.1.2.2 Economic Models in Service Provisioning Environment

Various economic models have been applied in different service provisioning

environment. Buyya, et al, (2002) discussed the different economic models which

include: commodity market, posted price, bargaining, the tendering/contract-net,

auctions, the bid-based proportional resources sharing, the

Chapter Three

 29

community/coalition/bartering, the monopoly and the oligopoly. We present a brief

description of these models below:

a) The Commodity model

In this model, pricing strategies are the major concern as it employs pricing methods

such as flat rate, usage-based, subscription (fixed rate for a period of time), and

demand-supply. The resource owners specify their service price and charge users

according to the amount of resource they consume. In the flat rate, once the price is

fixed for a certain period, it remains the same irrespective of service quality or service

demand. On the other hand, in the supply and demand approach, the price changes

very often based on the quantity supplied or demanded. In principle, when the

quantity demanded increases or quantity supplied decreases, price increases until a

point of equilibrium between quantity supplied and demanded is reached.

b) The Posted price model

This model is based on advertisement for service discount or promotion offers in

order to attract consumers to establish market share or motivate consumers to consider

cheaper slots. Sales advertisement can occur, in a Grid computing environment, when

a Grid opens new services and wants to attract users, or when a Grid wants to

maximize resource utilization during off-peak time.

c) The Bargaining model

A prospective consumer can negotiate with a producer for a reasonable price. In a

market, this often occurs when the consumer finds a more competitive price from

other producers (price match). In a Grid environment, bargaining is based on different

objective functions of resource owner and resource user. For example, resource owner

Chapter Three

 30

may reduce price for the resources with lower utilization or poor performance.

Resource user may bargain for a lower price with promise to use more resources from

this owner in the future.

d) The tendering or contract-net model

In this model, a bidding process is initiated by consumer. Each eligible producer

responds with their available commodities and intended prices. Consumer compares

each producer’s bid and chooses the winner. The final result is a contract.

e) The Auction model

This model is quite popular for consumers to bid on a commodity advertised by a

producer. The process is initiated by producer. There are many traditional auction

methods, such as English auction, first-price sealed-bid auction, Vickrey auction,

Dutch auction, and double auction.

f) The bid-based proportional resource sharing model

This model deals with shared resources, while most economic models deal with

competitive resources. Each resource user gives a bid for a resource based on its

demand function. Resource owner collects all bids and allocates resource to some or

all of users based on the proportion of each user’s bid.

g) Community/Coalition or Bartering/Share Holders Model

Chapter Three

 31

A community of individuals shares each other’s resources to create a cooperative

computing environment. Those who are contributing their resources to a common

pool can get access to that pool. A sophisticated model can also be employed here for

deciding how much resources share contributors can get. It can involve credits that

one can earn by sharing resource, which can then be used when needed. A system like

Mojonation.net employs this model for storage sharing. This model works when those

participating in the Grid have to be both service providers and consumers.

h) Monopoly and oligopoly

Monopoly means a single resource owner dominates the market and set the price.

Oligopoly means a small number of resource owners dominate the market and set the

price.

Buyya, et al (2005) discuss the economic models that have been implemented in

computational Grid environment. Authors give brief remarks on how the systems

apply the economic models. The models discussed apply one or more of the following

pricing schemes: the flat rate, usage based, smart market, Paris-Metro, per-time,

Culumus, priority and the expected capacity pricing scheme. The combination of the

pricing schemes and the economic models seeks to determine the fair access price for

any given service. Therefore, price management is significant in commercial Grid,

and the economic model has influence on the time that is spent in negotiating the

price. Some economic models like the bargaining model, the posted price model dwell

much on price negotiation.

3.1.2.3 Existing Pricing Models for Service Provisioning Environment

Chapter Three

 32

The Posted Price Model is amongst the models that deals more on price negotiations.

With regards to minimizing the time spent on price negotiation, Mingbiao, et al

(2007), proposed a Posted Price Based Grid Resource Supermarket (GRS) model. The

Posted Price Based GRS model consists of the manager of GRS, which gains the

profits by serving the Grid resource providers and consumers. The resource

consumers share the resources at posted price according to his plan and pocketbook.

The resource provider gains income for his resource being shared. The pricing

strategy of GRS is a key problem for the GRS manager. Therefore, the profits of GRS

depends on the policy of the resource that how much to buy in and how much to sell

out. The resource value in GRS is defined as a function of many parameters as

follows: Resource Value = Function (Resource Strength, Cost of physical resources,

Service overhead, Demand, Value perceived by the user, Preferences). Figure 3.3 is

an overview of the GRS based posted price model with its components.

Song, et al, (2007) proposed a competitive pricing model which uses competitive

strategy to determine the price thereby, maximizing the utilization rate of the Grid

system. Competitive pricing strategy means pricing the service within a competitive

market. The authors also considered three variables for determining the price:

i. Quality of product.

ii. Quantity of product sold, and

iii. The products provided by competitors.

In this model, the quality of products becomes its QoS level. The authors explain how

the QoS affects the price of the resource and how the price affects the QoS of the

Chapter Three

 33

GRS

Grid

Resource

Supermarket

Grid Resource User

Grid Resource User

Grid Resource User

Grid Resource Provider

Grid Resource Provider

Grid Resource Provider

GRS User Agent 1

GRS User Agent 2

GRS User Agent m

Grid Resource Agent 1

Grid Resource Agent 2

Grid Resource agent n

Figure 3. 3: An Extended Posted Price Model with Grid Resource

 Supermarket (Mingbiao, et al, 2007)

resource. They further argue that price should be determined such that the service

providers will be able to recover the cost of producing the service and at the same

time maintain reasonable profit level.

Yuan, et al (2005), defined a mechanism that tackled unreasonable resource pricing

strategies in market-oriented Grid systems. Therefore, a price-adjusting mechanism

that is responsible for adjusting unreasonable access prices of resources is then

proposed. This price-adjusting mechanism is based on the supply and demand of a

resource, such that, price is adjusted based on the fundamental economic theory of the

supply and demand model. It effectively achieves the equilibrium price to promote the

supply and demand globally in a more balanced fashion. In Yuan, et al, (2006) the

Price Influence Model, the price-adjusting mechanism that was implemented is briefly

discussed and furthermore, the dependence of Grid resources are introduced with a

suggested potential mechanism that fairly prices and charges those resource.

Chapter Three

 34

Figure 3. 4: An extended GRACE architecture with RPFM Module

 (Liu and Xu, 2007)

Liu and Xu (2007) extended Grid Architecture for Computational Economy

(GRACE) architecture (Buyya, et al, 2001) by adding the Resources Pricing

Fluctuation Manager (RPFM). The RPFM enables both resource consumers and

providers to maximize their profits. Figure 3.4 is an overview of the extended

GRACE architecture with RPFM module. The extended GRACE architecture is based

on the bidding pricing process that is similar to the original GRACE. The RPFM add

the more convenient approach of determining the price. It is responsible for the

pricing fluctuation of resources and correspondence with Grid Trade Server (GTS)

and Grid Trade Manager (GTM). RPFM gets bids information of resources from

GTS, gets Resource Usage Records (RURs) information from Grid Resource Meter

(GRM), calculates the ratio of resources utilization according to some algorithms,

dispatches new pricing to GTS and GRM.

Chapter Three

 35

RPFM consists of four components that are integrated to achieve dynamic price

fluctuation. Those components are Resource Object, Pricing (PR), Utilization Monitor

(UM), and Controllers. These components interact with the GTS and the GRM to

handle the price fluctuation based on the external resource usage information.

Zhao, et al (2007) proposed a dynamic price model based on the demand prediction

and task classification. The predicted resource demands adjust the resource price

according to the results of the demand prediction. In addition, this model can calculate

the future price of each task based on demand prediction. Three parts constitute the

model and these are: resource demand prediction mechanism, resource price-adjusting

mechanism and task pricing mechanism. It applies the Markov chain to predict the

future demands of Grid resources and uses a price-adjusting mechanism based on the

future demands, which takes into the interdependence of price and demand into

consideration. Therefore, the mechanism can balance resource loads and guarantee the

profits of resource providers at the same time. In addition, tasks are classified into two

categories: exclusive tasks and shared tasks. According to the differences between

them, the authors proposed two different task-pricing strategies. Based on these, they

introduced a novel task-pricing mechanism, which takes serving time, the workload

and the type of the task into consideration at the same time.

3.1.2.3 The State of the Art in Grid Services Pricing

Pricing of Grid services still remains a challenge as Grid became the medium for

trading with services on-demand. A current pricing model that provides the

mechanism to set a price based on the market demand, supply and QoS level as

determinants is the one proposed by Song, et al, (2007). However, it is not fully

Chapter Three

 36

suitable for GUISET. The service pricing mechanism for commercial Grid

environment must be dynamic so

Table 3. 1: Summary Evaluation of Pricing Models

Pricing Model

Production

cost

Recovery

Fairness

to

consumer

and

provider

Dynamic
Price for

QoS

GRS based Posted Price

Model (Mangbiao, et al, 2007)

 X X 

Competitive Pricing

Model(Song, et al, 2007)

   

Price Influence Model (Yuan,

et al, 2006)

X   X

Extended GRACE(Lui and

Xu, 2007)

X X  X

Dynamic Price Model (Zhao,

et al, 2007)

X X  X

 Denotes that the pricing model considers the feature.

X Denotes that the pricing model does not consider the feature

as to reflect the current market situation and to be fair to both service providers and

consumers. The current pricing approaches do not fully cater for GUISET

environment pricing requirement. In Table 3.1 we present the evaluation of the

reviewed pricing models against the GUISET pricing model design criteria. Therefore

in this study we proposed a customized price service mechanism for GUISET.

3.1.3 Incentives and Charging Models in Distributed Computing

Distributed computing paradigms have become the major network tool for sharing

and cooperating of different independent, distributed organization to accomplish their

different task (Iyilade, et al, 2007; Hales, 2004). Incentives have been introduced as

the mechanism to enforce cooperation amongst the organizations and prevent

selfishness (Ip, et al, 2008). Due to the acceptance of different distributed computing

Chapter Three

 37

paradigm as the medium for trading resources, charging models have been introduced

to manage the economical compensation for service usage to service providers. In this

Section, we review the mechanisms that have been used to award incentives and

charge service providers and consumers.

3.1.3.1 Incentive Approaches in Distributed Systems

Incentives have been mostly applied in peer-to-peer networks to enforce cooperative

file sharing amongst the peers. It is generally agreed that cooperative network

performs significantly better than traditional client-server model in supporting large

amount of users. Distributed Systems provide an inexpensive platform for

applications that require scalability, efficiency and robustness (Ip, et al, 2008). There

are two major reasons for incentive in distributed systems; first, it is to prevent the

free-riding problem, and second, it motivates the users to cooperate for the success of

the systems.

In order to increase the involvement of users to the systems different incentives

mechanisms have been proposed. Ip, et. al, (2008) identified two mechanisms, namely

the reputation based system and contribution-rewarding mechanism. In the reputation

based system, participating users accumulates points to reflect their resource

contribution to the distributed system. The authors further identified the following

issues that are faced by this mechanism such as how to quantify the user’s

contribution, how to provide a secure and trusted reputation system to prevent fake

reputation. The contribution-rewarding mechanism is based on credit the users for

cooperating in the system. The rewards may come from the overall revenue of the

cooperative network, by means of service pricing or cost reduction.

Chapter Three

 38

Iyilade, et al, (2007), proposed a two fold incentive model. The first part of the model

is to credit resource providers for the resource they contribute and for becoming a

member of the Grid. Its second part is based on the negotiation of deadline for the

execution of job by service consumers. The authors provided the two algorithms for

their model, the donor credit allocation and deadline negotiation algorithm. This

mechanism is likely to have the same problems that are faced by the reputation based

system mechanism and it may cause unnecessary delays on execution of job

submitted by service consumers.

Feldman and Chuang, (2005) classify incentive mechanisms into three groups, namely

the inherent generosity, monetary payment and reciprocity based schemes. These

schemes faces the same issues that we identified by Ip, et al (2008). Obreitar and

Nimis (2003) discussed the taxonomy of incentive patterns for peer-to-peer systems,

multi-agent systems and ad hoc network. The incentive patterns shown in Figure 3.5

are classified into two groups namely, trust and trade based patterns.

In Grid computing, the issue of incentives is classified into two approaches (Behsaz,

et al, 2006): market based and cooperative-based. The market based incentive

approach is when service consumers are awarded points for rating each time they

consume services deployed in the environment. Therefore, the ratings are used as the

foundation of calculating and incentive the consumer may qualify for. Economic

models are used to achieve the incentive mechanism. The cooperative based approach

is when users’ main goal is to achieve organizational virtualization of resources in

order to achieve cooperative sharing of resources. This approach is characterized by

free riders, users using services without contributing anything (Emmert and Jorns,

Chapter Three

 39

2006). In this study, we employed an integrated approach that effectively combines

the strength of both the market based and cooperative based incentive approach.

Figure 3. 5: Taxonomy of Incentive Patterns (Obreitar and Nimis, 2003)

3.1.3.2 Charging Models in Grids

Charging of services in a distributed system become more and more important for

systems which are utilized commercially (Stiller, et al, 2001). In general a charging

model is a quadruple (Q, T, C, U) of the quantity Q, the time T, the quality class C,

and the user profile U (Caracas and Altmann, 2007). The quality class C of services

allows specifying different quality types. The user profile U, represents history

information of user’s consumption, the valuation of the user’s importance to the

business, or special promotions. In this Subsection we will review how charging and

incentives have been awarded to service providers and consumers.

3.1.3.3 The State of the Art in Incentives and Charging Models for Grids

Chapter Three

 40

The requirements to provide capable and manageable incentive-based charging

mechanisms for GUISET infrastructures remain a challenge. Existing incentives

mechanisms focus more on preventing selfishness and encouraging cooperation

amongst the users of the network. Therefore, they need to be customized in order to

meet the requirements of the commercial Grid environment, such as to provide

incentives to both service providers and consumers as a tool to encourage them to

contribute and utilize services. The charging mechanism should, therefore, be

incentive compatible and be customizable to apply different policies (like Service

Level Agreements) that may need to be applied in the commercial Grid environment.

Current charging mechanisms do not accomplish this requirement. In this study we

proposed an incentive-compatible charging mechanism that can be extended to cater

for other policies that may need to be applied during the creation of the consumer’s

bill.

3.2 Summary of the Chapter

This chapter presented a literature survey on how usage accounting, pricing and

incentive based charging are conducted in a distributed system environment. It has

been discussed that the service demand, supply and QoS level contribute to the

pricing of the Grid service, while the usage accounting data forms the basis of the

economic compensation of the service consumption as it manages the metered usage

data for multi-services. The charging of service remains the exit point of the whole

process of achieving an appropriate compensation for Grid service usage. At this

stage the incentives or rebates are applied based on user’s previous ratings or

reputation. This research is about finding the most appropriate usage accounting,

pricing and charging model for GUISET with flexibility and non-rigidity as main

Chapter Three

 41

design criteria. In view of the current state of the art, our own proposed system

architecture for usage accounting, pricing and charging is, therefore, presented in

Chapter Four.

 41

CHAPTER FOUR

MODEL DEVELOPMENT

This chapter presents the proposed usage accounting, pricing and charging system

architecture for GUISET. Based on the research questions outlined in chapter one

(Section 1.3), there is a need to identify the suitable pricing approach for GUISET,

map accounting records to charging service such that consumers are charged based on

their service usage and incentives awarded to service providers and consumers based

on the services contributed to GUISET and consumed from GUISET, respectively.

Therefore, our first design criterion is to integrate a pricing approach that uses market

demand, supply and QoS as determinants of the market unit price for the services.

Thus, Subsection 4.1.1 presents the design criterion for the Pricing Service. The

second design criterion is to manage robustness in usage accounting such that

resource usage records (RUR) from metering systems are mapped accordingly. In

Subsection 4.1.2, Usage Accounting Service design criteria are outlined. The last

design criterion is to make the charging model to be incentive based or compatible. In

Subsection 4.1.3 design criteria of Charging Service are outlined. Section 4.2

discusses the proposed system architecture.

4.1 Design Criteria for Usage Accounting, Pricing and Charging in

GUISET

GUISET environment is envisioned to be the community of a large number of

heterogeneous services deployed in different administrative domains. The service

providers and consumers may join and leave GUISET dynamically. Service

management is, therefore, a challenge as it is hard to manage the capacity and ensure

that enough services are available to provide satisfactory QoS to consumers. In this

Chapter Four

 42

Section, the design criteria for service usage accounting, pricing and charging are

outlined to craft the mechanisms that will contribute towards service management.

4.1.1 Custom GUISET Pricing Approach

GUISET as an environment for trading diverse services to different consumers over

the Internet, the price of the service is important as it reflects service value. In order to

monitor changes in market unit price and to prevent unreasonable profit and under-

pricing of services, the following design goals become imperative:

i. Production cost recovery: the price should be able to recover the service

production costs.

ii. Fairness to consumer and provider: the price should be fair for both

consumers and providers.

iii. Dynamic: the price should be dynamic such that it reflects the market forces.

iv. Price for QoS: the price should match the quality level of the service: the

higher the QoS level, the high the price.

4.1.2 Managed Robustness in Usage Accounting

Usage accounting forms the basis for economic compensation of the service

consumed and provided. We define the following design objectives for usage

accounting service in GUISET:

i. Tracking: the service usage should be traceable, so that all services consumed

are compensated correctly.

ii. Evaluation: the service usage should be evaluated through the usage

accounting service such that their distribution will be fair to all service

providers.

Chapter Four

 43

iii. Fairness: to enforce fairness on service compensation, the service usage

metering records should be arranged according to service providers.

4.1.3 Incentive-Compatible Charging for GUISET

The following design features are crucial to incentive-compatible charging approach

for GUISET:

i. Incentive-compatible: It must be incentive-compatible in order to encourage

service providers and consumers to contribute or consume services

respectively.

ii. Flexibility: It must be flexible to pricing schemes such that different incentives

are applicable.

iii. Customization: It must have capability to manage information about the user’s

profiles and charges data.

4.2 GUISET Usage Accounting, Pricing and Charging System

Architecture (GUAPCA)

We now present GUISET Usage Accounting, Pricing and Charging System

Architecture (GUAPCA). In designing the architecture the following assumptions

were taken into consideration:

1. The services are classified into QoS classes: Guaranteed, Control-load, and

Best effort.

2. The market is competitive and governed by supply and demand. For the

supply curve to exist there must be a large number of service providers in the

market, and for a demand curve to exist, there must be many consumers.

3. Both service providers and consumers must be price takers and no-one must

be a price setter. A price taker cannot influence the price but must take it or

leave it.

Chapter Four

 44

4. Both service providers and consumers have good information about service

qualities and availability.

5. The monitoring system continuously updates the market demand and supply.

The market demand (xD) is basically the total number of units requested (ir)

for service A belonging to class x, and market supply (xS) is the total number

of units that providers (is) of service A belonging to QoS class x (xQoS) are

willing to provide.





n

i

xix QoSrD
1

,  EffortBestloadControlQuaranteedx  ,,





m

i

xix QoSsS
1

,  EffortBestloadControlQuaranteedx  ,,

6. In order to control the change of price, the floor (lower) and ceiling (upper)

price limits for a given QoS class are set.

Based on the above mentioned assumptions and design criteria outlined in Section

4.1, we formulated Usage Accounting, Pricing and Charging System Architecture for

our GUISET research focus. Figure 4.1 shows the GUISET Usage Accounting,

Pricing and Charging System Architecture (GUAPCA). The GUAPCA is integrated

to realize the design criteria outlined in Subsections 4.1.1 – 4.1.3 through its

components. The Pricing Service consist of two components namely, Price Regulator

(PREG) and Price Recommender (PREC), has been designed to achieve the design

goals outlined in Subsection 4.1.1. The Accounting Service has also been designed to

target design objectives of Subsection 4.1.2 via components namely Classifier and

Correlator . Finally, the Charging Service makes up the Charging Agent (CA) and

User Rating Agent (URA) to meet the design features envisaged in Subsection 4.1.3.

Therefore, GUAPCA comprises three main components as services, namely:

Chapter Four

 45

Service Usage

 DB

Classifier

Correlator

Service

Directory

Price Regulator

Price

Recommender

Service Information

DB

Pricing service

Accounting Service

Charging service

User Information

DB

User Rating

Agent
Charging

Agent

Charges

DB

Metering

system

Monitoring

System

Billing

 Server

System Architecture

Figure 4. 1: GUISET Usage Accounting, Pricing and Charging System

 Architecture (GUAPCA) (Buthelezi et .al, 2008)

Usage Accounting Service, Pricing Service and Charging Service. To enhance a better

understanding of GUAPCA, the functionalities of each of the components are

explained in details in the next Subsections.

4.2.1 Usage Accounting Service Component

For the purpose of GUISET and in line with earlier stipulated design criteria, the

usage accounting service comprises of two sub-components: (i) the Classifier, and (ii)

the Correlator. They have complementary responsibilities to accomplish the design

criteria and produce an appropriate accounting record such that the economic-based

service usage compensation is achieved. The Classifier is set to arrange the mixed

metering data received from different service providers’ metering systems to form the

Chapter Four

 46

Service Usage Record (SUR) according to the serviceID and customerID. This is

done to enable easy trace of service usage and evaluate service utilization by different

service consumers in different time slots. The job or task scheduler, which is not part

of this research work, can therefore use that usage analysis data to fairly distribute

task to different service providers.

The SUR are stored in the Service Usage Database. For the purpose of this study, the

data that is valuable is the total number of units per service that a particular user has

consumed at a certain period, as this will form the economical compensation to the

service provider. The Correlator sub-component is responsible for the creation of the

consumer-service usage records (CSUR) for each service consumer. This is done to

enable the usage-based charging for the services consumed by the service consumer at

the specific period. The CSUR is, therefore, forwarded to the Charging Service where

appropriate policies such as pricing, incentives awarding kick in to produce the

Consumer-Service Usage Bill (CSUB). These components work similar to the one

proposed by Agarwal, et al (2003), however in our case the Correlator retrieves

information from the database and sends it to the Charging Service in the form of

CSUB whereas the Classifier arranged the metering data.

4.2.2 Pricing Service Component

Pricing is defined, in this study, as the process of determining the market unit price of

any given service base on its market demand, supply and QoS level and to regulate

the market unit price. Therefore, our Pricing Service component consists of two sub-

components: the Price Recommender (PREC) and Price Regulator (PREG). The

PREC is set to recommend the service market unit price based on the price

determinants (market demand, supply and QoS level). Therefore, it holds the Price

Chapter Four

 47

Adjusting Mechanism (PAM). The PAM employs three strategies to recommend the

market unit price for services based on the price determinants. The strategies are:

price decrease, price keeping and price decrease. The PREG takes the recommended

price from the PREC and evaluate it against the price limits to prevent the over-

pricing and under-pricing of service unit. In order to achieve price regulation the

PREG uses the Price Controlling Mechanism (PCM). First, we describe the main

strategy used to achieve price recommendation (PAM), then the price regulation

strategy (PCM).

4.2.2.1 The Price-adjustment Mechanism (PAM)

The PAM from the PREG adjusts the market unit price of a service based on its

market demand, supply and QoS level. The quantity of service units demanded by the

consumers in a particular period depends on the market unit price of the service, the

market unit price of related service, the capital of the consumer, the QoS preferences

of the consumer, and the number of consumers in GUISET.

This relationship is expressed as:),,,,(xgxd DQoSYPPfQ  , where,

dQ = quantity of market demand for service

xP = market unit price of the service

gP = market unit prices of the related services

Y = the capital of the consumer

QoS = the QoS preferences of the consumer

xD = the number of consumers in GUISET

A very important factor that determines the market demand for a service in a

particular QoS class is the market unit price of the service. Normally, when the

Chapter Four

 48

market unit price of a service increases, quantity of market demand for the service

will decrease. However, as the market unit price decreases, the quantity of market

demand for the service will increase. The market unit price of the service is

influenced by the market unit price of the related services. The related services can be

classified into two: substitutes and complements.

Substitute services are services that can be used in the place of another service without

lessening a consumer’s level of satisfaction. For example, service B is substitute

service for service A, if and only if service B offers same services with service A, but

with different QoS level. If the market unit price of substitute service B decreases, the

quantity of market demand for the service B usually decreases. The opposite, on the

other hand, is also true – as the market unit price of substitute service B increases, the

quantity of market demand for the other service increases.

Compliment services are services that are often used jointly. A decrease in the market

unit price of a complement service will increase the quantity of market demand. In

other words, if the market unit price for a compliment service decreases, the quantity

of market demand for the other service will increase. An increase in the capital of a

consumer increases the market demand for a service.

A decrease in the capital of a consumer decreases the quantity of market demand for a

service. The decline in the QoS and preferences of the consumer for a service will

cause a decrease in the quantity of market demand for it. The number of consumers in

the market determines number of prospective customers for a particular service. The

quantity of service units supplied by the service provider for a particular QoS class in

GUISET depends on the market unit price of the service, the input costs (production

costs), the market unit price of alternative services and technology.

Chapter Four

 49

This relationship is expressed as:),,,(cacxs TPPPfQ  where,

dQ = quantity of market supply.

xP = market unit price of the service.

cP = input costs (cost of production).

aP = market unit price of alternative services.

cT = technology.

The above are factors that influence the quantity of market supply for a service. The

relationship between the market unit price of a service and the quantity of market

supply thereof is very important in economics. As the market unit price of the service

increases, the service provider will be willing to supply a higher quantity of service

units. However, if the market unit price decreases, service providers will supply lower

quantity. The law of market supply states that given that all other things remain the

same, if the market unit price of a service increases, the quantity of market supply

thereof will increase; and if the market unit price of a service decreases, the quantity

of market supply thereof will decrease. A service provider will only be willing to

supply a service to GUISET if it can recover its input costs including the profit it

plans to make. Any increase in the factors of production will affect a service

provider’s input costs.

A technological advance that decreases the input costs is an important factor that can

influence the market supply of the service. An improved technology causes an

increase in market supply. Any new technology that does not lower the input costs

will not be of any value to a service provider thus service provider will not buy or use

Chapter Four

 50

such technology. The change of the market unit prices of alternative services supplied

by the service provider influence the market supply of the current service.

In order to determine the market the price of a service, QoS-based Competitive

Pricing Algorithm (QCPA) shown in Figure 4.2 was formulated. The QCPA fix the

market unit price based on the market demand, supply, and QoS level. Basically, the

market demand and supply information is used to decide the market unit price of a

given service. The services are classified into three categories namely Guaranteed,

Best-effort, and Control-Load, according to their QoS level. Therefore, each service

class has its own market demand and supply which is used to decide the market unit

price for the service. As the algorithm is QoS based, the inputs are the QoS class,

input cost price, market demand and supply for services.

In order to determine the Market Unit Price, the Market-unit-Price-Rate-of- Change

(MPRC) is needed. Therefore, the MPRC for each service is calculated based on the

market demand and supply for that QoS class to which the service belongs. There are

three cases that are analyzed to determine market unit price. The first case is when the

market demand is greater than the market supply; therefore price increase strategy is

applied. In our price increase strategy, MPRC is multiplied by the input price then the

product is added to the input price to calculate the market unit price for the service.

The second case is when the market demand is less than the market supply; therefore,

the price decrease strategy is applied. In the price decrease strategy, MPRC is

subtracted from 1, the difference is multiply with the input cost then the product is

subtracted from the input price to calculate the market unit price for the service. The

last case is when the market unit price is equal to the market supply; in this case the

Chapter Four

 51

INPUTS : QoS Class, Input_Price, Market_Demand, Market_Supply

PROCESS:

 For QoS Class

 Market_PricerateofChange = Market_Demand/Market_Supply

 If (Market_Demand > Market_Supply)

 Market_Price = Input_Price + (Input_Price *

 Market_PricerateofChange)

 else if (Market_Demand <Market_Supply)

 Market_Price = Input_Price - (Input_Price * (1 –

 Market_PricerateofChange))

 else

 Market_Price = Input_Price

 end if

 End For

 OUTPUT: Market_Price

Figure 4. 2: QoS-based Competitive Pricing Algorithm

price keeping strategy is applied. The price keeping strategy makes the input cost

price to be the market unit price.

4.2.2.2 Price Controlling Mechanism (PCM)

In order to prevent unreasonable profit and under-pricing of services, for our

GUISET, we include the Price Controlling Mechanism (PCM) for each QoS class in

the PREG component of the Price Service. Thus, the price floor and price ceiling

(lower and upper price) for each QoS class are set from our GUISET. In order to

prevent market unit price intersection, the price limits form borders amongst the QoS

classes. Thus, the guaranteed, control-load and best-effort QoS classes price limits

will not overlap one another. The guaranteed QoS class holds the highest price limits,

Chapter Four

 52

control-load QoS class holds the medium price limits and best-effort QoS class holds

the lower price limits.

The PREG sub-component in the pricing service component ensures that the market

unit price of the service is in between the market price limits of its QoS class. Thus,

PREG evaluates the market unit price recommended by the PREC component against

the price limits. Figure 4.3 shows the price evaluation algorithm.

 The algorithm has the following variables:

recP = service recommended market unit price by PREC

 p = QoS class price ceiling

 p = QoS class price floor

mincP = minimum input costs

maxcP = maximum input costs

These variables are used to evaluate the recommended market unit price for the given

service at a particular QoS Class.

The market unit price from the PREG and QoS class are the main inputs for the price

evaluation algorithm. For a given QoS class, the predefined price limits for each QoS

class are retrieved to regulate the price. There are three cases that are considered to

regulate the market unit price. The first case is when the market unit price is less than

the price floor. The market unit price is therefore increased by the maximum of the

difference of the minimum input cost minus the market unit price, and the price floor

minus the market unit price.

Chapter Four

 53

Input : recP , QoS_Class

Process :

 For a given QoS_Class

 Get  p ,  p

 if (recP <  p)

  ),max(
min recrecc PPPPP 

 PPP recrec 

 else if (recP >  p)

  ),max(
max

pPPPP reccrec 

 PPP recrec 

 else

 return recP

 End If

 End For

Output: Price for Service

Figure 4. 3: Price Evaluation Algorithm

For example, if the market unit price is $2.00, price floor $5.00 price ceiling $25.00,

minimum input cost $10.00 and maximum input cost $24.00. The market unit price is

less than the price floor, therefore the maximum differences will be $8, and therefore

the market will be $8.00 plus $2.00 equal to $10.00.

Chapter Four

 54

The second case is when the market unit price is greater than the price ceiling. In this

case the market unit price is decreased by the maximum of the difference of the

market unit price minus maximum input cost and market unit price minus the price

ceiling. For example, For example, if the market unit price is $55.20, price floor $5.00

price ceiling $25.00, minimum input cost $10.00 and maximum input cost $24.00.

The market unit price is greater than the price floor, therefore, the maximum

differences will $31.20, and therefore, the market will be $55.20 minus $31.20 equal

to $24.00.

The last case is when the market unit price is in between the market price limits. It is

therefore remain unchanged because it meets the boundaries of the PREG. Therefore,

the price evaluation algorithm regulates the market unit price for each service

belonging to a certain QoS class based on the recommended market unit price and the

price limits.

4.2.3 Charging Service Component

Charging in this study is defined as the process of calculating the final bill that a

particular service consumer has accumulated during services consumption at a

particular period and applies the relevant incentives if necessary. In order to achieve

this in GUISET, we proposed Charging Service component in the GUAPCA. The

Charging Service component is designed according to the design criteria outlined in

Subsection 4.1.3. It comprises two major sub-components, that is, (i) The User Rating

Agent (URA), and (ii) Charging Agent (CA). The URA sub-component rates the

service consumers based on their usage information from the usage accounting

service. The service consumers’ profiles are updated each time they consume the

services. The points accumulated by the service consumers are used to calculate the

Chapter Four

 55

discount they qualify for at that particular time. The discounts are given as incentives

to the service consumers.

The CA sub-component calculates the consumer’s bill based on the Consumer-Service

Usage Record (CSUR) from the Usage Accounting Service Correlator component.

Briefly, the total number of service units consumed is multiplied by the market unit

price for that particular service QoS class taken from the pricing service. This

provides the possibility to apply the usage-based pricing approach, and award

incentives and penalties to service consumers and providers respectively for their

loyalty and commitments. The following parameters are taken into consideration in

calculating the consumer’s bill and this relationship is expressed as:

),,,(cpuc PUCQfU  , where,

cU = consumer’s bill

uQ = the quantity of service units consumed at a particular period

C = QoS class

pU = user profile

cP = the price of the service in C

In order to calculate the service consumer’s bill, User Charging Algorithm (UCA)

shown in Figure 4.4 is devised. UCA takes the userID and gets all the service usage

records (SURs) from the usage accounting service for the given userID at that

particular period. It then, gets the market unit prices for all the services listed on the

SUR for a given userID. Based on the total number of service units utilized for each

service, it is multiplied by the corresponding market unit price. This is done to

calculate the user bill before applying incentives.

Chapter Four

 56

Input: userID,

Process:

For a given UserID

a) Get all the service usage records for particular period

b) Get all the market unit price for each service in service usage record

 c) For each service consumed

 c1) Calculate the total charges

 c2) Calculate the discount based on userID ratings

 c3) Rewards points if applicable for each service consumed based on QoS

 class

 c4) increment serviceID for current UserID

 End For

End for

Output: total service consumer’s bill for userID

Figure 4. 4: User Charging Algorithm

The discount to the given userID is calculated for each service utilized using the

userID previous ratings. Points are therefore awarded to the userID for each service

utilized using appropriate QoS class policies of awarding points. The CA component

uses it to verify and calculate the consumer-service usage bill (CSUB).

In order to achieve the user rating, management of user profiles and encourage users

to contribute and utilize services, the rating of users (consumers and providers) is in

two parts. Users are awarded points based on the number of services they contribute

in GUISET and the number of service units they have consumed. It is done during the

contribution and consumption of services respectively.

URA purpose is to rate the user based on their reputation on the usage of services and

the number of services that are contributed. These enable the credibility of incentives

to users. In order to achieve this we have proposed the User Rating Algorithm.

Chapter Four

 57

Start

UserID

Does profile

exist?

Does Profile

exist?

Create profile

Assign ratings

Total User

ratings

Is consumer or

Provider?

Update Ratings Update Ratings

End

Provider Consumer

Yes

NoNo

Yes

Figure 4. 5: User Rating Algorithm

(UserRA) shown in Figure 4.5. UserRA takes a userID as input and checks if the user

at that current time is contributing or utilizing a service. If the user does not have a

existing profile, the profile for the user is created and assigned with ratings based on

the QoS class policies of ratings. Otherwise, the profile is updated for the given

userID.

4.3 Summary of the Chapter

In this chapter, we have presented the design of an integrated system architecture for

usage accounting, pricing and charging for GUISET. The design criteria for each

Chapter Four

 58

component of the system architecture have been stated and the assumptions that were

considered in designing the system architecture are listed. The discussions for each

component’s functionalities are also discussed.

In chapter five, the simulation environment for the purpose of the evaluation of the

system architecture performance is described and the results are analyzed.

 59

CHAPTER FIVE

SIMULATION AND RESULTS ANALYSIS

In chapter four, we presented the GUAPCA model design for GUISET. In this

chapter, we focus on the simulation experiment carried out to evaluate GUAPCA.

Specifically, Section 5.1 describes the simulation environment. In Section 5.2, the

simulation experiments are described together with the results obtained during

simulation. Section 5.3 is the summary of the chapter.

5.1 Description of the Simulation Environment

5.1.1 Simulation Setup

Our GUISET-based service provisioning environment reflects the market structure of

perfect competition. Therefore, our simulation environment was designed to form a

perfect competitive market. It is based on the idea that no single service provider has

influence on the price of the service it sells. There are many consumers and service

providers. Each provider supplies a number of units for the service in the particular

QoS class and consumers request a number of units for the service in the particular

QoS class. Therefore, the sum of units requested and supplied in the particular QoS

class form our simulation quantity of market demand and supply, respectively.

Consumers and providers are also at liberty to enter and leave the environment at any

time.

The consumers utilize the service as a utility, so the market demand is expected to

change faster compared to the market supply. The pricing service component

Chapter Five

 60

recommends the market unit price of the service based on the quantity of market

demand and supply at that particular period. It further regulates the market unit price

against the preset market price limits. The usage accounting service maintains usage

metering data from service providers’ sites. This helps to provide the correct data

about usage of services by consumers. The service consumers and providers are

awarded points for respectively utilizing and contributing services to the market. The

points awarded become the ratings of the users. The ratings are then used to calculate

the rebates to be given to the consumers when calculating the final consumer’s bill.

The simulator was implemented using Netbeans 6.1 IDE (Integrated Development

Environment) for Java with Java Development Kit version 1.5 (JDK 1.5). The

underlying database was implemented using MySQL 5.0. The default values and

range of parameters that were considered for the simulation in this study are presented

in Table 5.1, with their descriptions.

Parameter Name Description QoS Class Value

Chapter Five

 61

Table 5. 1: Parameters and their default values for the simulation

5.1.2 Performance Analysis

In testing the performance of GUAPCA, the following metrics were used:

i. Efficiency –This refers to the effectiveness of the pricing service component

in reacting to different market situation to recommend and control the

market unit price.

ii. Fairness – This refers to a state when the pricing service component

recommends the market unit price for the service based on the quantities of

market demand and supply. In economic terms, for the competitive market

approach, the market unit price is fair when it is determined based on the

quantities of market demand and supply. It also refers to a state where the

charging component awards incentives to users based on their previous

profiles.

Service Demand

Quantity of units

demanded per QoS class

in particular period for a

single consumer.

Best-Effort [1, 20]

Control-Load [1, 20]

Guaranteed [1, 20]

Service Supply

Quantity of units

supplied per QoS class in

particular period for a

single provider.

Best-Effort [1, 5]

Control-Load [1, 5]

Guaranteed [1, 5]

Input Costs

Service production costs

per QoS class for a single

provider.

Best-Effort [$5.00, 25.00]

Control-Load [$26.00, 45.00]

Guaranteed [$46.00, 65.00]

Points Total number of points

that are awarded per

service unit in a

particular QoS class.

Best-Effort 0

Control-Load 1

Guaranteed 2

Market Price limits The range that the market

unit price should be in

between.

Best-Effort [$10.00, 20.00]

Control-Load [$30.00, 40.00]

Guarantee [$50.00, 60.00]

Period All [1, 9]

Chapter Five

 62

5.2 Simulation Experiments

This Section presents the simulation experiments and results that were obtained. Each

experiment was conducted in order to observe the behavior of the usage accounting,

pricing and charging service components of GUAPCA system. The usage accounting

service classifies and correlates the data generated as metering data for services usage.

This is inline with the design criteria outlined in chapter four (Section 4.1.2).The

service usage data is used for the experiments. Experiment I in Subsection 5.3.1 was

conducted to evaluate the efficiency and fairness of the pricing service component

when recommending the market unit price of a service based on the price

determinants (market demand, supply and QoS level) and to regulate the market unit

price against the market price limits. Furthermore, to meet the design criteria outline

in chapter four (Subsection 4.1.1) Experiment II in Subsection 5.3.2 was conducted to

test the fairness of the charging service component in giving rebates to consumers

based on their previous ratings and meet the design criteria outlined in Chapter Four

(Subsection 4.1.3).

5.2.1 Experiment I: Market Forces and Price Controls

The aim of this experiment was to investigate the performance of Price Recommender

(PREC) and Price Regulator (PREG) in different market situations. The design was to

test whether our price adjusting mechanism conforms to the standard micro-

economics demand and supply concepts. The law of demand states that if supply is

held constant, an increase in demand leads to increased market unit price, while a

decrease in demand leads to a decrease in market unit price. Additionally, to test

whether the price controlling mechanism was effective in regulating the market unit

Chapter Five

 63

price for the service against the market price limits for the particular QoS class, the

values of market demand and supply were generated randomly.

(a) The effect of market forces on market unit price

The market forces that we considered in our experiment are the quantity of market

demanded and supplied together with the input costs. The input cost becomes the

initial market unit price of the service. The values of the market demand and supply

affect the market unit price of the service. In order to recommend the market unit

price in our price adjusting mechanism, we defined the market unit price rate of

change (MPRC) in Chapter Four (Subsection 4.2.2).

Definition 1: The market unit price rate of change based on the quantity of market

demand and supply:

ply market_sup

_
 MPRC

demandmarket
 (1)

Definition 2: If the quantity of market demand is greater than the quantity of market

supply, the market unit price is calculated using the following formula:

 MPRCtsinputtsinputpricemarket  cos_cos__ (2)

Definition 3: If the quantity of market demand is less than the market supply, the

market unit price is determined by:

  MPRCtsinputtsinputpricemarket  1cos_cos__ (3)

Chapter Five

 64

When the quantity of market demanded for the service increases in the particular QoS

class and the quantity of market supplied remains constant, the market unit price of

service increases. The decrease in quantity of market demanded was compensated for

by the decrease in the market unit price for that service. But as the quantity of market

demand and supply becomes equal, the market unit price remains unchanged,

implying that the market is at its equilibrium point. At equilibrium, the excess

quantity of market demand becomes zero, therefore, there is no variation in market

unit price.

The experiment was conducted using different QoS classes. The results obtained are

shown in Figures 5.1 – 5.3. We noticed that as market unit price increases, the

quantity of market demanded fell and as market unit price decreases the quantity of

market demanded rose which shows that our pricing strategy conforms to the standard

law of demand and supply. For instance, in Figure 5.1 at periods 3 and 8, the quantity

of market demanded was less than the quantity of market supplied, therefore, the

market unit price was decreased to attract more consumers and as a result, the

quantity of market demand rose steadily again.

Also, in Figure 5.2 during periods 1 and 6, the quantities of market demanded and

supplied were equal; therefore, the market unit price of the service remained

unchanged. When the quantity of market demand was above the quantity of market

supply, the market unit price was increased by our PREC and the quantity of market

demanded fell. In Figure 5.3, during period 1, the over-demand state of the service

resulted in a rise in the market unit price to $192.00 and the quantity of market

demanded dropped.

Chapter Five

 65

Table 5. 2: Simulation parameters for Best-Effort QoS Class in Experiment I (a)

Input Data Results

Period
Market Demand

Market Supply
Inputs Costs ($)

Market unit price

($)

1 11 10 10.00 21.00

2 15 10 10.00 25.00

3 2 10 10.00 2.00

4 20 10 10.00 30.00

5 10 10 24.00 24.00

6 13 10 24.00 55.20

7 15 10 23.00 57.50

8 2 10 23.00 4.60

9 12 10 23.00 50.60

Market Demand vs Market Supply

for the Best-Effort QoS Class

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

/
U

n
it

s

Market Demand Market Supply Input Costs Market Price

Figure 5. 1: Market Demand versus Market Supply for Best-Effort QoS

Class

Chapter Five

 66

Table 5. 3: Simulation parameters for Control-Load QoS Class in Experiment I (a)

Input Data Results

Period Market Demand Market Supply Input costs ($)
Market unit

price ($)

1 6 6 30.00 30.00

2 12 6 30.00 90.00

3 1 6 30.00 5.00

4 18 6 30.00 120.00

5 16 6 33.00 121.00

6 6 6 33.00 33.00

7 3 6 27.00 17.00

8 8 6 27.00 63.00

9 26 6 27.00 144.00

Market Demand vs market supply

for the Control-Load QoS Class

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

/
U

n
it

s

Market Demand Market Supply

Input costs Market Price

Figure 5. 2: Market Demand versus Market Supply for Control-Load QoS Class

Chapter Five

 67

Table 5. 4: Simulation data for Guaranteed QoS Class in Experiment I (a)

Input Data Results

Period Market Demand Market Supply
Input Costs ($)

Market unit

price ($)

1 36 16
59.00

192.00

2 3 16 59.00 11.10

3 4 16 59.00 148.00

4 12 16 48.00 36.00

5 17 16 48.00 99.00

6 19 16 48.00 105.00

7 18 16 47.00 99.90

8 15 16 47.00 44.10

9 3 16 47.00 8.81

Market Demand vs Market Supply

for Guaranteed QoS Class

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

/
U

n
it

s

Market Demand Market Supply Input Costs Market Price

Figure 5. 3: Market Demand versus Market Supply for Guaranteed QoS Class

Chapter Five

 68

(b) The effect of price controls on market unit price

In the experiment described in Section 5.3.1(a), the market unit prices were obtained

based on the quantity of market demand and supply for each QoS Class. In this

experiment, we test the effectiveness of our price control mechanism in regulating the

recommended market unit price against the market price limits. The price ceiling

assumed imposed market price limit on how high a market unit price can be set on a

service by GUISET authority. It is set to protect consumers from conditions that could

make services inaccessible and prevent providers from over-pricing the services they

render. Meanwhile, price floor is an imposed market price limit on how low a market

unit price can be charged for a service. It is set to protect the supplier from under-

pricing the services they render. In order to obtain the Regulated Market unit price

(RMP) from our price controlling mechanism, the following formulas were defined.

Definition 4: In situations where the market unit price is greater than the price ceiling,

the RMP is calculated using the following formula:




















ceilingpricepricemarket

tsinputpricemarket
MAXpricemarketRMP

__

,cos__
_

max
 (4)

Definition 5: In a situation where, the market unit price is less than the price floor, the

RMP is calculated using the following formula:




















pricemarketfloorprice

pricemarkettsinput
MAXpricemarketRMP

__

,_cos_
_

min
 (5)

Chapter Five

 69

In order to test the efficiency of our pricing service component in regulating the

market unit price against market price limits, we conducted three tests one each for

the three different QoS classes. The market price limits for each QoS class were

defined in Table 5.1.

As the market price limits are set to control the market unit price of the service, in

situations where the market unit prices are greater than the price ceiling they are

decreased to the price ceiling or lower depending on the MRC. The decrease of the

market unit price result to an over-demand situation, therefore, mechanisms to

distribute available services to consumers are needed. On the other hand, the market

unit price floor is set to protect the providers from low market unit price. In a situation

where the market unit price is lower than the price floor, the market unit price is

increased to the price floor or above depending on the MRC. These result into a

situation where there is oversupply of services. Figures 5.4 – 5.6 show the graphical

presentation of the results that were obtained from our simulation.

We noticed that as market unit price increases above the price ceiling or decreases

below the price floor, the market unit price was reduced or raised to be within the

market price limits, respectively. For instance, in Figure 5.4, at periods 3 and 8, the

market unit prices for the service were raised because they are below the price floor.

In other periods the market unit prices were above the price ceiling; therefore they

were reduced.

In Figure 5.5 during periods 1 and 6 the market unit prices were within the price

limits for the service; therefore, it was not changed. In periods 3 and 7, the market

unit prices were increased, as they were lower than the price floor. Whereas in other

Chapter Five

 70

period the market unit prices were reduced by our PREG as they were above the price

ceiling.

In Figure 5.6, during periods 1, 3, 5, 6, and 7 the market unit prices were higher than

the price ceiling; therefore they were reduced to be in between the market price limits.

In the other periods, the market unit prices were below the price floor; as a result they

were increased to be in between the market price limits.

 The observed market unit prices adjust at any time to the market price limits;

therefore, we concluded that our price control mechanism was efficient in controlling

the market unit price in different situations as justified by the results.

Chapter Five

 71

Table 5. 5: Simulation Data for Best-Effort QoS Class for Experiment I (b)

Input Data Results

Period Input Costs($)
Recommended Market

Unit Price($)
Regulated Market Unit

Price($)

1 10.00 21.00 20.00

2 10.00 25.00 20.00

3 10.00 2.00 10.00

4 10.00 30.00 20.00

5 24.00 24.00 20.00

6 24.00 55.20 20.00

7 23.00 57.50 20.00

8 23.00 4.60 10.00

9 23.00 50.60 20.00

Recommended Market Unit Price vs Regulated Market Unit

Price for Best-Effort QoS Class

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Period (Hour)

P
ri

c
e
 (
D

o
ll
a
r)

Input Costs($) Recommended Market Unit Price($)

Regulated Market Unit Price($) Price Floor

Price Ceiling

Figure 5. 4: Recommended Market Unit Price versus Regulated Market Unit Price

 for Best-Effort QoS Class

Chapter Five

 72

Table 5. 6: Simulation Data for Control-Load QoS Class for Experiment I (b)

Input Data Results

Period Input Costs($) Recommended

Market Unit Price($)

Regulated Market unit

price($)

1 30.00 30.00
30.00

2 30.00 90.00 33.00

3 30.00 5.00 30.00

4 30.00 120.00 33.00

5 33.00 121.00 33.00

6 33.00 33.00 33.00

7 27.00 17.00 30.00

8 27.00 63.00 33.00

9 27.00 144.00 33.00

Recommended Market Unit Price vs Regulated Market Unit

Price for Control-Load QoS Class

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

Period (Hour)

P
ri

c
e
 (
D

o
ll
a
r)

Input Costs($) Recommended Market Unit Price($)

Regulated Market Unit Price($) Price Floor

Price Ceiling

Figure 5. 5: Recommended Market Unit Price versus Regulated Market Unit Price for

 Control-Load QoS Class

Chapter Five

 73

Table 5. 7: Simulation Data for Guaranteed QoS Class for Experiment I (b)

Input Data Results

Period Input Costs($) Recommended Market

Unit Price($)
Regulated Market unit

price($)

1 59.00 192.00 60.00

2 59.00 11.10 50.00

3 59.00 148.00 50.00

4 48.00 36.00 50.00

5 48.00 99.00 60.00

6 48.00 105.00 60.00

7 47.00 99.90 60.00

8 47.00 44.10 50.00

9 47.00 8.81 50.00

Recommended Market Unit Price vs Regulated Market Unit

Price for Guaranteed QoS Class

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9

Period (Hour)

P
ri

ce
 (
D

o
ll
a
r)

Input Costs($) Recommended Market Price($)

Regulated Market Price($) Price Floor

Price Ceiling

Figure 5. 6: Recommended Market Unit Price versus Regulated Market Unit Price for

 the Guaranteed QoS Class

Chapter Five

 74

5.2.2 Experiment II: Effect of Incentive Based Charging

Incentives were employed to encourage service providers and customers to provide

and use the services. In this case, the service providers are awarded points for services

they contributed in the environment, with expectation that they would not leave the

environment but eventually become consumers of other services too. A consumer is

awarded a point for each service he or she consumes in the environment. We assume

that the profiles of both service providers and consumers are available based on their

usage history. For service providers, we assume that a Service Evaluation Module

(SEM) which evaluates the services that the service provider intends to render and is

assigned to an appropriate QoS Class, which in turn award the service provider with

points based on the number of units that are to be provided.

The consumer is expected to pay lesser amount for using services compared to the

actual amount if he has gained enough point to qualify for rebates. This implies that

the customers would save some amount to be utilized later for other services. We

viewed this as a mechanism to encourage both customers and service providers to

utilize and contribute services to the environment. Figures 5.7 – 5.9, shows the

graphical presentation of the total amount before and after discount that the customer

owe. Table 5.8 present the range of discounts that customer may qualify for based on

the point gained before. Therefore, this is used to calculate discount amount for the

customer in a particular.

In Figure 5.7, we observed that the total amount and discount that the consumer

received depended greatly on the total number of units of service consumed and the

points awarded previously. The quantity of units of the service consumed determined

Chapter Five

 75

the total amount before discount that the customer owed. The discount amount is

calculated based on previous points and is below the total amount before discount.

We further observed that in Figure 5.8; the total amount and discount amount differed

when compared to Figure 5.7. The services, respectively rendered in this QoS class

carried more points than those in Figure 5.7; therefore, customers were gaining more

points for each unit of a service consumed. Thus, the discounts given to them were

greater or equal to 10 percent.

In Figure 5.9, the services rendered in this QoS class carried the highest points per

service unit consumed. Therefore, the observation is that, the more the consumer

utilized the services, the more points were gained and invariable, the discounts

became 20 percents. The decrease in service consumption resulted in the decrease in

points awarded to the consumers. In all, we concluded that our charging approach is

efficient, and fair in awarding points and discounts to a customer, as this was usage

based. The trend that was observed in the results of our experiment below clearly

shows that our charging approach was incentive-compatible.

Chapter Five

 76

Table 5. 8: Customer Ratings and Discounts

Rating(Points) Discount(Percentage)

5 5

10 10

50 20

Table 5. 9: Simulation Data for Best-Effort QoS Class for Experiment II

Period

(Hour)

User

Rating(Points)
Total amount($)

Discount

Amount($)

Market Unit Price

($)
Usage Units

1 87 20.00 13.08 20.00 1

2 19 260.00 222.30 20.00 13

3 83 70.00 47.88 10.00 7

4 9 300.00 285.00 20.00 15

5 45 80.00 68.40 20.00 4

6 35 80.00 68.40 20.00 4

7 124 110.00 75.24 20.00 5.5

8 24 240.00 205.20 10.00 24

9 25 400.00 342.00 20.00 20

Total Amount versus Discount Amount

 for Best-Effort QoS Class

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

Total amount Discount Amount

Figure 5. 7: Total amount versus discount amount for Best-Effort QoS Class

Chapter Five

 77

Table 5. 10: Simulation Data for Control-Load QoS Class for Experiment II

Period

(Hour)

User

Rating(Points)
Total amount($)

Discount

Amount($)

Market unit price

($)
Usage Units

1 192 528.00 422.40 30.00 176

2 182 660.00 528.00 33.00 20

3 38 180.00 162.00 30.00 7

4 133 90.00 72.00 33.00 2.73

5 29 396.00 356.40 33.00 12

6 193 30.00 24.00 33.00 0.91

7 208 264.00 211.20 30.00 8.8

8 34 198.00 178.20 33.00 6

9 144 180.00 144.00 33.00 45

Total Amount vs Discount Amount

 for the Control QoS Class

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

Total Amount Discount Amount

Figure 5. 8: Total amount versus discount amount for the Control QoS Class

Chapter Five

 78

Table 5. 11: Simulation Data for Guaranteed QoS Class for Experiment II

Period

(Hour)

User

Rating(Points)
Total amount($)

Discount

Amount($)

Market unit price

($)
Usage Units

1 222 1080.00 864.00 50.00 21.6

2 182 200.00 160.00 50.00 4

3 137 500.00 400.00 50.00 10

4 144 150.00 120.00 60.00 2.5

5 174 1140.00 912.00 60.00 19

6 160 1200.00 960.00 60.00 20

7 112 200.00 160.00 50.00 4

8 12 250.00 225.00 50.00 5

9 9 1140.00 1083.00 50.00 19

Total Amount vs Discount Amount

for Guaranteed QoS Class

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

Period(Hour)

P
ri

c
e
(D

o
ll
a
r)

Total Amount Discount Amount

Figure 5. 9: Total amount versus discount amount for Guaranteed QoS Class

Chapter Five

 79

5.3 Summary of the Chapter

In this chapter, we have presented the simulation results of the GUAPCA system. The

QoS classes were introduced as a mechanism to categorize the service deployed in

GUISET. The results obtained show that our price adjusting mechanism conformed to

the micro-economics principles of determining the market unit price based on the

market demand and supply. For example, when quantity supplied was 6 units and

quantity demanded was 1 unit, the market unit price was decreased from $30.00 to

$5.00 thereby encouraging more consumers for the service and when the market unit

price was $148.00 above the price ceiling of $60.00, it was decreased to $50.00.

Therefore, we conclude that our price adjusting and controlling mechanism is

effective, and fair in adjusting and controlling the market unit price for the service in a

particular QoS class. Thus, our approaches successfully meet the performance metrics

defined.

Our charging and usage accounting service is fair in awarding points and supplying

usage information for the purpose of charging the customer based on the usage and

rewarded credits.

Commented [M2]: Rework these.

Chapter Six

 80

 CHAPTER SIX

CONCLUSION AND FUTURE WORK

In this chapter, we present the conclusion on the research questions that were

presented in this dissertation. Furthermore, the chapter identified the issues that

needed to be addressed in a future improvement on this work.

6.1 Conclusions

In this research, an attempt had been made to address the issues of usage accounting,

pricing and charging in GUISET Grid environment by developing GUAPCA. Three

research questions were identified. The first research question was: which pricing

scheme is suitable for GUISET Grid environment such that SMMEs can affordably

have access to IT services provided? The competitiveness and dynamism of the Grid-

based service provisioning environment required a demand and supply price

determining approach, as it is fair to both service provider and consumer. The market

unit price limits was introduced to prevent over-pricing and under-pricing of the

services.

The second research question was: How are the usage accounting-records mapped and

supplied to the charging service component in GUISET? As the usage accounting-

records forms the basis of economic compensation for service usage and rebates, we

followed a two stage approach of arranging usage data from metering service, the first

stage arranged the data from metering service according to service provider’s identity,

and the second stage arrange the metering data according to consumer’s identity.

Chapter Six

 81

The third research question was: how can incentives be awarded to users (provider

and consumers) in our GUISET? This research question was answered by following a

two-mode incentive approach; service providers were awarded points for contributing

services and consumers equally awarded points for utilizing service in the

environment. Once the points have reached a certain number are changed to be

rebates that can be given to users when consuming services

In this research work, three objectives were set in order to realize the goal, the

objectives are: (1) conduct an investigation on how accounting, pricing and charging

are managed in a Grid environment, (2) emulate existing knowledge and develop

integrated system architecture for usage accounting, pricing and charging in GUISET,

and, (3) simulate and evaluate the developed system architecture as proof of concepts.

In this dissertation, the literature survey conducted was presented in chapter two. This

was done to accomplish the first objective of this research. Therefore, the research

efforts presented in chapter two resulted to the integration of the usage accounting,

pricing and charging system architecture for GUISET (GUAPCA). The design criteria

for usage accounting, pricing and charging services were derived from the work that

others have done towards solving the issues of usage accounting, pricing and charging

in a multi-service heterogeneous, Grid-based service provisioning environment.

The second objective of this research was achieved by emulating existing knowledge

to integrate the GUAPCA. The detailed description of GUAPCA and functionalities

of its components were presented in chapter three. The competitive market approach

was adopted for determining the market unit price for services. The adoption was

motivated by the behavior of service providers and consumers in the Grid-based

service provisioning environment, which reflect the competitive market approach.

Chapter Six

 82

Based on the description of the GUAPCA, the simulation was implemented to

evaluate its performance. The results obtained from the simulation show that, overall

the usage accounting, pricing and charging components for GUAPCA are suitable for

the GUISET. Thus, third objective of the research was achieved.

6.2 Future Work

The results obtained from the simulations showed suitability of GUAPCA for real-

time environment. However, the simulations are only estimation of the reality.

Therefore, the viability of GUAPCA still needs to be tested in the real-life

environment. In the evaluation and simulation of GUAPCA other factors that may

contribute to changing or fixing the market unit price of the service (such as prices of

substitute and complementary services) were ignored. In the future, we would like to

see how the pricing service component will behave when those factors are taken into

consideration. The issues of security have been ignored in this study; therefore, the

expansion of the study should look at the security mechanisms that can be used to

prevent the usage data from being faked or forged by providers or consumers for self

indulgence. Furthermore, issues of service allocation in situation where there is over-

demand need to be addressed such that customers are treated with fairness.

 83

BIBLIOGRAPHY

Adigun, M.O. Emuoyibofarhe, O.J. Migiro, S.O. (2006). Challenges to Access and

Opportunity to use SMME enabling Technologies in Africa, a presentation at 1st All

Africa Technology Diffusion Conference, June 14 – 16, Johannesburg, South Africa.

Afgan, E. Bangalore, P. (2007). Computation Cost in Grid Computing Environments,

In Proceedings of the 29th International Conference on Software Engineering

Workshops, Page(s):9-12.

Agarwal, V. Karnik, N. Kumar, A. (2003). Metering and Accounting for Composite

e-Services, In Proceedings of the IEEE international conference on E-Commerce,

Page (s):35-39.

Al-Ali, R. Rana, O. Walker, D. (2003). G-QoSM: A Framework for Quality of

Service Management, available online at:

http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/139.pdf, last accessed on 30

November 2008.

Anerousis, N. and Mohindra, A. (2006). The Software-as-a-Service Model for Model

and Ubiquitous Computing Environments, In Proceedings of Third IEEE Annual

International Conference on Networking & Services, Page(s):1-6.

Barmouta, A. and Buyya, R.(2003). GridBank: A Grid Accounting Services

Architecture (GASA) for Distributed Systems Sharing and Integration, In Proceedings

of the 17th International Symposium on Parallel and Distributed, Page(s): 245.1

Behsaz, B. Jaferian, P. Meybodi, M.R. (2006). Comparison of Global Computing with

Grid Computing, In Proceedings of the Seventh International Conference on Parallel

and Distributed Computing, Applications and Technologies, Page(s): 531-534.

Blefari-Melazzi, N. Di Sorte, D. Reali, G. (2002). Usage-based Pricing Law to Charge

IP Network Services with performance Guarantees, In proceedings of IEEE

conference on Communications, Page(s):2652 –2656.

Blefari-Melazzi, N. Di Sorte, D. Reali G. (2003). Accounting and Pricing: a forecast

of the scenario of the next generation Internet, Computer Communications, Vol. 26,

Page(s): 2037-51.

Buthelezi, M.E. Adigun, M.O. Ekabua, O.O. Iyilade, J.S. (2008). Accounting, Pricing

and Charging Service Models for a GUISET Grid-Based Service Provisioning

Environment, In proceeding of The 2008 International conference on E-learning, E-

business, Enterprise Information system, and E-government, Page(s) 350 - 355.

Buyya, R. Abramson, D. Giddy, J. (2001). A Case for Economy Grid Architecture for

Service Oriented Grid Computing, available online at:

http://www.buyya.com/papers/ecogrid.pdf , last accessed on 30 November 2008.

Buyya, R. Abramson, D. Venugopal, S. (2005). The Grid Economy, In proceedings

of the IEEE, Page(s): 698-714, ISSN: 0018-9219.

http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/139.pdf
http://www.buyya.com/papers/ecogrid.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5

Bibliography

 84

Carcas, A. Altmann, J. (2007). A Pricing Information Service for Grid Computing, In

Proceedings of the 5th international workshop on Middleware for grid computing:

held at the ACM/IFIP/USENIX 8th International Middleware Conference, ISBN:978-

1-59593-944-9.

Chowdhury, H.R. (2006). Internet Pricing, available online at : www. tml. tkk. fi/

Publications/C/21/Chowdhury_ready.pdf, last accessed on: 27 November 2008.

Condor Project, http://www.cs.wisc.edu/condor/

Czajkowski, K. Foster,I. Kesselman, C. Tuecke, S. (2004). Grid Service Level

Agreements Grid Resource Management with Intermediaries, Grid resource

management: state of the art and future trends Page(s): 119 – 134, ISBN: 1-4020-

7575-8, available online at: ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1078.pdf,

last accessed on 14 November 2008.

Dimitrakos ,T. Mac Dollaral , D. Yuan ,F. Gaeta ,M. Laria ,G. Ritrovato , P. Serhan ,

B. Wesner , S. Wulf, K. (2003). An Emerging Architecture Enabling Grid Based

Application Service Provision, In Proceedings of the 7th International Conference on

Enterprise Distributed Object Computing, Page(s):240-251.

Emmert, B. Jorns, O. (2006). Prepaid Peer-to-Peer Services, In Proceedings Sixth

IEEE International Conference on Peer-to-Peer Computing, Page(s): 223- 224.

Feldman, M. and Chuang,J. (2005). Overcoming Free-Riding Behavior in Peer-to-

Peer Systems, ACM Special Interest Group in Electronic Commerce Exchanges, Vol.

5, Page(s):41-50.

Foster, I. (2002a). What is Grid? A Three Point Checklist, available online at:

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf, last accessed on 30

November 2008.

Foster, I. Kesselman, C. Nick, J. M. Tuecke S. (2002b). The Physiology of the Grid

An Open Grid Services Architecture for Distributed Systems Integration, available

online at: http://www.globus.org/alliance/publications/papers/ogsa.pdf, last accessed

on 30 November 2008.

Galli, D.L. (2000). Distributed Operating Systems: Concepts and Practice, Upper

Saddle River: Pearson Prentice Hall. 1-27.

Gardfjäll, P. (2004). Accounting in Grid Environments - an Architecture Proposal and

a Prototype Implementation, unpublished Masters Thesis, available online at:

http://www.cs.umu.se/~peterg/thesis/thesis.pdf, last accessed on 30 November 2008.

Globus Toolkit OGSA, http://www.globus.org/

http://www.tml.tkk.fi/Publications/C/21/Chowdhury_ready.pdf
http://www.tml.tkk.fi/Publications/C/21/Chowdhury_ready.pdf
http://www.cs.wisc.edu/condor/
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1078.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.cs.umu.se/~peterg/thesis/thesis.pdf
http://www.globus.org/

Bibliography

 85

GÖhner, M. Waldburger, M. Gubler, F. Rodosek, G.D. Stiller, B. (2007). An

Accounting Model for Dynamic Virtual Organizations, In Proceedings of the Seventh

IEEE International Symposium on Cluster Computing and the Grid, Page(s):241 -248.

Goldi, A. (2007. The Emerging Market for Web-based Enterprise Software,

unpublished M.Sc Thesis, available online at:

http://www.agoeldi.com/media/Thesis_AGoeldi_Final_09MAY07.pdf, last accessed

on 30 November 2008.

Guarise, A. Patania, G. Piro, R. (2005). Distributed Grid Accounting System, 4th

EGEE Conference, available online at

http://personalpages.to.infn.it/~piro/pub/presentations/DGAS_EGEE-4_Pisa_2005-

10.pdf, last accessed on 28 November 2008

Haifeng, G. Galligan, P. Mooney, J. Coronado, A. Kehoe, D. (2005). The application

of utility computing and Web-services to inventory optimization, In proceeding of

IEEE International Conference on Services Computing, Page(s): 185 – 191.

Hales, D. (2004). From Selfish Nodes to Cooperative Networks-Emergent Link-based

Incentives in Peer-to-Peer Networks, In Proceedings of the Fourth International

Conference on Peer-to-Peer Computing, Page(s):151-158.

Huhns M. and Singh, M.P. (2005). Service-Oriented Computing: Key Concepts and

Principles, IEEE Internet Computing, Vol. 9, ISBN: 1089-7801, Page(s):75-81.

Ip, A.T.S. Liu, J.C.S. Liu, J. (2008). A Revenue-rewarding Scheme of Providing

Incentive for Cooperative Proxy Caching for Media Streaming Systems. ACM

Transactions on Multimedia Computing, Communications, and Applications, Vol. 4,

No. 1, Article 5.

Iyilade, J. Aderounmu, A. Adigun, M. (2007) .Incentives for Resource Sharing and

Cooperation in Grid Computing System, In Proceedings of the International

Conference on Next Generation Mobile Applications, Services and Technologies

(NGMAST), Page(s): 191-198.

Jacob B, Brown M., Fukui K., Trivedi N. (2005). Introduction to Grid Computing,

IBM Redbooks, available online at: www.redbooks.ibm.com, last accessed on 30

November 2008.

Jagamathan, S. Almeroth, K.C. (2004). A dynamic pricing scheme for e-content at

multiple levels-of-service, International journal on Computer Communications,

Vol.27, Page(s): 374-385.

Kannan, P.K. Pope, B.K. Chang, A. (2008). “Pricing Product Lines of Digital

Content: a Model Choice Experiment”, In Proceedings of 41st Hawaii International

Conference on System Sciences, Page(s): 300-308.

http://www.agoeldi.com/media/Thesis_AGoeldi_Final_09MAY07.pdf
http://personalpages.to.infn.it/~piro/pub/presentations/DGAS_EGEE-4_Pisa_2005-10.pdf
http://personalpages.to.infn.it/~piro/pub/presentations/DGAS_EGEE-4_Pisa_2005-10.pdf
http://www.redbooks.ibm.com/

Bibliography

 86

Kounev, S. Nou R., Torres, J. (2007). Autonomic QoS-Aware resource management

in grid computing using online performance models, In Proceedings of the 2nd

international conference on Performance evaluation methodologies and tools ACM

International Conference; Vol. 321 Article No. 48 ,ISBN:978-963-9799-00-4.

Li, J. Ziegler, W. Wäldrich, O. Mallmann, D. (2008). Towards SLA Based Software

License Management in Grid Computing CoreGRID - Network of Excellence,

CoreGRID Technical Report,TR-0136, available online at:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0136.pdf, last

accessed on 30 November 2008.

Lim, D. Ho. Q.T. Zhang, J. Lee, B.S. Ong, S.Y. (2005). MOGAS, A Multi-

Organizational Grid Accounting System, International Journal on Information

Technology, Vol. 11, No. 4, Page(s): 84-103.

Liu, G. and Xu, Y. (2007). A New Grid Economy Architecture with Resources

Pricing Fluctuation Module, In Proceedings the Sixth IEEE International Conference

on Grid and Cooperative Computing, Page(s): 701-704.

Mattern, F. (2000). State of the Art and Future Trends in

Distributed Systems and Ubiquitous Computing, available online at:

http://www.vs.inf.ethz.ch/publ/papers/DisSysUbiCompReport.html, last accessed on:

01 December 2008.

Mingbiao, L. Jian, L. Shengli, X. (2007). Posted Price Model Based on GRS and Its

Optimization Using in Grid Resource Allocation, In Proceeding of International

Conference on Wireless Communications, Networking and Mobile Computing,

Page(s): 3172-3175.

Nadiminti, K. and Buyya, R. (2005). Enterprise Grid computing: State-of-the-Art,

available online at: http://www.gridbus.org/reports/EOSJArticleTR05.pdf, last

accessed on: 23 November 2008.

Narahari, Y. Raji, C.V.L. Ravikumar, K. Shah, S. (2005). Dynamic pricing models for

electronic Business, Sardana Journal, Vol. 30, Page(s): 231-256.

Obreiter, P. and Nimis, J. (2003). A Taxonomy of Incentive Patterns-The Design

Space of Incentives for Cooperation, In Proceedings of the Second International

Workshop on Agents and Peer-to-Peer Computing, Springer LNCS 2872, Melbourne,

Australia.

Papazoglou, M. P. Traverso, P. Dustdar, S. Leymann, F. (2007). Service-Oriented

Computing: State of the Art and Research Challenges, IEEE Computer, Page(s) 64 -

71.

Parashar,M. and Lee, C. (2005). Grid computing: Introduction and Overview, In

Proceedings of the IEEE, Special issue on Grid Computing, available on line at:

http://www.caip.rutgers.edu/TASSL/Papers/proc-ieee-intro-04.pdf, last accessed on

27 November 2008.

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0136.pdf
http://www.vs.inf.ethz.ch/publ/papers/DisSysUbiCompReport.html
http://www.gridbus.org/reports/EOSJArticleTR05.pdf
http://www.caip.rutgers.edu/TASSL/Papers/proc-ieee-intro-04.pdf

Bibliography

 87

Patel, Y. and Darlington, J. (2006). Average-Based Workload Allocation Strategy for

QoS-Constrained Workflow Based Job in Web Service, In Proceedings of

International Conference on Advanced Computing and Communications, Page(s):

664-669.

Pettipher, M.A. Khan, A. Robinson, T.W. Chan, X. (2007). Review of Accounting

and Usage Monitoring, available online at:

http://www.jisc.ac.uk/media/documents/programmes/einfrastructure/jisc_aum_final_r

eport_wth.pdf, last accessed on 28 November 2008.

Ramaswamy, S. and Malarvannan, M. (2006). Service Oriented Architectures for

Grid Computing Environments Opportunities and Challenges, In proceedings of IEEE

conference on Granular Computing, Page(s) :325-328 .

Rappa, M.A. (2004). The utility business model and the future of computing services,

IBM Systems Journal, Vol. 43, no.1, Page(s):32-42.

Reichl, P. Stiller, B. (2003). The Cumulus Pricing Model as an adaptive framework

for feasible, efficient and user-friendly tariffing of Internet services, International

Journal on Computer Networks, Vol. 43, Page(s): 3-24.

Santos, R. Andrade, A. Cirne, W. (2005). Accurate Autonomous Accounting in Peer-

to-Peer Grid, In Proceedings of 3rd International Workshop on Middleware of Grid

Computing, Page(s):1-6.

Song, J. Liu, W. Wang, Y. (2007). Competitive Pricing Model for Resource

Scheduling in Grid Computing, In Proceedings in Third International Conference on

Semantic, Knowledge and Grid, Page(s): 406-409.

Srinivasan, L. and Treadwell, J. (2005). An Overview of Service-Oriented

Architecture, Web Services and Grid Computing, HP Software Global Business Unit,

available online at: http://h71028.www7.hp.com/ERC/downloads/SOA-Grid-HP-

WhitePaper.pdf , last accessed on: 28 November 2008.

Stiller, B. Flury, P. Reichl, P. Hasan, null. (2001). Charging Distributed Services for

Computational Grid Architecture, First IEEE International Symposium on Cluster

Computing and the Grid (CCGrid'01), page(s): 596-601.

Sun Grid Engine project, http://gridengine.sunsource.net/

Tanenbaum, A.S. and Van Steen, M. (2007). Distributed Systems: Principles and

Paradigms, Upper Saddle River: Pearson Prentice Hall, 2nd Edition, Page(s): 1-20.

Vassiliadis, S. Tsaknakis, J. Tsakalidis, A. (2006). From Application Service

Provision to Service-Oriented Computing: A Study of the IT Outsourcing Evolution,

Telemetics and Informatics, Vol. 23, Page(s):271-293.

Vickery, G. Sakai, K. Lee, I. Sim, H. (2006). ICT, E-BUSINESS AND SMEs,

available online at: http://www.oecd.org/dataoecd/32/28/34228733.pdf, last accessed

on 30 November 2008.

http://www.jisc.ac.uk/media/documents/programmes/einfrastructure/jisc_aum_final_report_wth.pdf
http://www.jisc.ac.uk/media/documents/programmes/einfrastructure/jisc_aum_final_report_wth.pdf
http://h71028.www7.hp.com/ERC/downloads/SOA-Grid-HP-WhitePaper.pdf
http://h71028.www7.hp.com/ERC/downloads/SOA-Grid-HP-WhitePaper.pdf
http://gridengine.sunsource.net/
http://www.oecd.org/dataoecd/32/28/34228733.pdf

Bibliography

 88

W3C. (2002). Web Services Activity, available online at:

http://www.w3.org/2002/ws/, last accessed on 30 November 2008.

Xiaorong, L. Hong, M. C.; Hung, T. Kok, H. T. Turner, S.J. (2008). Design of an

SLA-Driven QoS Management Platform for Provisioning Multimedia Personalized

Services, In Proceedings of 22nd International Conference on Advanced Information

Networking and Applications - Workshops, 2008. Page(s):1405 – 1409.

Yeo, C. S. and Buyya, R. (2007). Pricing for Utility-driven Resource Management

and Allocation in Clusters, International Journal of High Performance Computing

Applications, Vol. 21, No. 4, Page(s):405-418.

Yeo, C.S. Dias de Assunção, M. Yu, J. Sulistio, A. Venugopal, S. Placek, M. Buyya,

R. (2007). Utility Computing and Global Grids, In H. Bidgoli, (Editor), Handbook of

Computer Networks, online at:

http://www.buyya.com/papers/HandbookCN_Utility_Grids.pdf, last accessed on: 28

November 2008.

Yuan, L. Zeng, G. Mao, X. (2005). A Resource Price-adjusting Mechanism for

Supply and Demand Balance in Grid Computing, In Proceedings of the Sixth

International Conference on Parallel and Distributed Computing, Applications and

Technologies. Page(s):97-99.

Yuan, L. Zeng, G. Wang, W. (2006). A Grid Resource Price-adjusting Strategy Based

on Price Influence Model, In Proceedings of the Fifth International Conference on

Grid and Co-operative Computing. Page(s):311-318.

Zhang, W. Yang, Y. Tang, S. Fang, L. (2007). QoS driven Service Selection

Optimization Model and Algorithms for Composite Services, In proceedings of the

31st Annual International Computer Software and Applications Conference, Page(s):

425-431.

Zhao, Z. Xu, L. Wang, B. (2007). A Dynamic Price Model with Demand Prediction

and Task Classification in Grid, In Proceeding of the Sixth IEEE International

Conferences on Grid and Cooperative Computing, Page(s): 775-782.

http://www.w3.org/2002/ws/
http://www.buyya.com/papers/HandbookCN_Utility_Grids.pdf

 88

APPENDIX A: SIMULATOR SOURCE CODE

package sys_arch;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.NamedQueries;

import javax.persistence.NamedQuery;

import javax.persistence.Table;

/**

 *

 * @author Mcebo

 */

@Entity

@Table(name = "meter")

@NamedQueries({@NamedQuery(name = "MeterEntity.findByMeterUID", query =

"SELECT m FROM MeterEntity m WHERE m.meterUID = :meterUID"),

@NamedQuery(name = "MeterEntity.findByResourceUID", query = "SELECT m

FROM MeterEntity m WHERE m.resourceUID = :resourceUID"),

@NamedQuery(name = "MeterEntity.findByConsumerUID", query = "SELECT m

FROM MeterEntity m WHERE m.consumerUID = :consumerUID"),

@NamedQuery(name = "MeterEntity.findByTimeUsage", query = "SELECT m

FROM MeterEntity m WHERE m.timeUsage = :timeUsage"), @NamedQuery(name

= "MeterEntity.findByPeriod", query = "SELECT m FROM MeterEntity m WHERE

m.period = :period")})

public class MeterEntity implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Column(name = "MeterUID", nullable = false)

 private String meterUID;

 @Column(name = "ResourceUID", nullable = false)

 private String resourceUID;

 @Column(name = "ConsumerUID", nullable = false)

 private String consumerUID;

 @Column(name = "TimeUsage", nullable = false)

 private int timeUsage;

 @Column(name = "Period", nullable = false)

 private int period;

 public MeterEntity() {

 }

 public MeterEntity(String meterUID) {

 this.meterUID = meterUID;

 }

Appendix A : Simulator Source Code

 89

 public MeterEntity(String meterUID, String resourceUID, String consumerUID, int

timeUsage, int period) {

 this.meterUID = meterUID;

 this.resourceUID = resourceUID;

 this.consumerUID = consumerUID;

 this.timeUsage = timeUsage;

 this.period = period;

 }

 public String getMeterUID() {

 return meterUID;

 }

 public void setMeterUID(String meterUID) {

 this.meterUID = meterUID;

 }

 public String getResourceUID() {

 return resourceUID;

 }

 public void setResourceUID(String resourceUID) {

 this.resourceUID = resourceUID;

 }

 public String getConsumerUID() {

 return consumerUID;

 }

 public void setConsumerUID(String consumerUID) {

 this.consumerUID = consumerUID;

 }

 public int getTimeUsage() {

 return timeUsage;

 }

 public void setTimeUsage(int timeUsage) {

 this.timeUsage = timeUsage;

 }

 public int getPeriod() {

 return period;

 }

 public void setPeriod(int period) {

 this.period = period;

 }

Appendix A : Simulator Source Code

 90

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (meterUID != null ? meterUID.hashCode() : 0);

 return hash;

 }

 @Override

 public boolean equals(Object object) {

 // TODO: Warning - this method won't work in the case the id fields are not set

 if (!(object instanceof MeterEntity)) {

 return false;

 }

 MeterEntity other = (MeterEntity) object;

 if ((this.meterUID == null && other.meterUID != null) || (this.meterUID != null

&& !this.meterUID.equals(other.meterUID))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "sys_arch.MeterEntity[meterUID=" + meterUID + "]";

 }

}

Listing 1: Classifier Source Code

Appendix A : Simulator Source Code

 91

package sys_arch;

import java.util.List;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.xml.ws.WebServiceRef;

/**

 *

 * @author Joseph

 */

@WebService()

@Stateless()

public class Classifier {

 @WebServiceRef(wsdlLocation =

"http://localhost:8080/ChargingAgentService/ChargingAgent?wsdl")

 private ChargingAgentService service;

 @PersistenceContext

 private EntityManager em;

// @WebServiceRef(wsdlLocation =

"http://localhost:8080/ChargingAgentService/ChargingAgent?wsdl")

// private ChargingAgentService service;

 /**

 * Web service operation

 */

 @WebMethod(operationName = "classifier")

 public boolean classifier() {

 List<MeterEntity> meters2bCharged = null;

 //TODO write your implementation code here:

 meters2bCharged = (List<MeterEntity>) em.createQuery("select e from

MeterEntity as e").getResultList();

 for (MeterEntity meterEntity : meters2bCharged) {

 System.out.println(meterEntity.toString());

 }

 try { // Call Web Service Operation

 sys_arch.ChargingAgent port = service.getChargingAgentPort();

 // TODO initialize WS operation arguments here

 java.util.List<sys_arch.MeterEntity> meters2BCharged = null;

 // TODO process result here

 boolean result = port.charge(meters2BCharged);

 System.out.println("Result = " + result);

 } catch (Exception ex) {

Appendix A : Simulator Source Code

 92

 // TODO handle custom exceptions here

 }

 return true;

 }

 public void persist(Object object) {

 em.persist(object);

 }

}

Listing 2 : Correlator Source Code

package sys_arch;

import java.util.List;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.xml.ws.WebServiceRef;

/**

 *

 * @author Joseph Okharedia II

 */

@WebService()

@Stateless()

public class ChargingAgent {

 @WebServiceRef(wsdlLocation =

"http://localhost:8080/PriceRegulatorService/PriceRegulator?wsdl")

 private PriceRegulatorService service;

 @PersistenceContext

 private EntityManager em;

 /**

 * Web service operation

 */

 @WebMethod(operationName = "charge")

 public boolean charge(@WebParam(name = "meters2bCharged")

List<MeterEntity> meters2bCharged) {

 System.out.println("ChargingAgentMeter2Charge begins...\n");

 if (meters2bCharged == null) {

 System.out.println("meters2bCharged is null");

Appendix A : Simulator Source Code

 93

 meters2bCharged = em.createQuery("select m from MeterEntity as

m").getResultList();

 } else if (meters2bCharged.isEmpty()) {

 System.out.println("meters2bCharged is empty");

 meters2bCharged = em.createQuery("select m from MeterEntity as

m").getResultList();

 }

 for (MeterEntity meterEntity : meters2bCharged) {

 System.out.println(meterEntity.toString());

 }

 System.out.println("ChargingAgentMeter2Charge end\n");

 //Check if entity is a consumer or provider

 for (MeterEntity meterEntity : meters2bCharged) {

 if (em.find(ConsumerEntity.class, meterEntity.getConsumerUID()) != null) {

 System.out.println(meterEntity.getConsumerUID() + " is a Consumer");

 }

 if (em.find(ProviderEntity.class, meterEntity.getConsumerUID()) != null) {

 System.out.println(meterEntity.getConsumerUID() + " is a Provider");

 }

 }

 processEntity(meters2bCharged);

 return true;

 }

 //persist into bill table

 public void processEntity(List<MeterEntity> meters2bCharged) {

 for (MeterEntity meterEntity : meters2bCharged) {

 int period = meterEntity.getPeriod();

 String meterUID = meterEntity.getMeterUID();

 String resourceUID = meterEntity.getResourceUID();

 String consumerUID = meterEntity.getConsumerUID();

 int timeUsage = meterEntity.getTimeUsage();

 int units = timeUsage;

 System.out.println("calling Price Recommeder...");

 System.out.println("Resource is : " + resourceUID);

 float price_per_unit = getRegulatedPrice(period, resourceUID, meterUID,

units);

 float totalPrice = price_per_unit * units;

 int rating = updateRating(resourceUID, consumerUID);

 updateDiscount(consumerUID, rating);

 float discountPrice = giveDiscount(totalPrice, rating,consumerUID);

 recordBill(meterUID, resourceUID, units, totalPrice, discountPrice, rating);

 }

 }

 public float getRegulatedPrice(final int period, final String resourceUID, final

String meterUID, final int units) {

Appendix A : Simulator Source Code

 94

 float regulatedPrice = 0.0f;

 try { // Call Web Service Operation

 sys_arch.PriceRegulator port = service.getPriceRegulatorPort();

 // TODO process result here

 regulatedPrice = port.recommendPrice(period, resourceUID, meterUID,

units);

 } catch (Exception ex) {

 // TODO handle custom exceptions here

 }

 return regulatedPrice;

 }

 public void updateDiscount(String consumerUID, int rating) {

 EntityEntity entity = (EntityEntity) em.find(EntityEntity.class, consumerUID);

 entity.setRating(rating);

 }

 public void recordBill(String meterUID, String resourceUID, int units, float price,

float discountPrice, int rating) {

 String classUID = ((ClassEntity) em.createQuery("SELECT r.classUID FROM

ResourceEntity AS r WHERE r.resourceUID='" + resourceUID +

"'").getSingleResult()).getClassUID();

 BillEntity bill = new BillEntity(meterUID);

 bill.setUnitsUsage(units);

 bill.setResourceUID(resourceUID);

 bill.setClassUID(classUID);

 bill.setCharge(discountPrice);

 bill.setRegulatedPrice(price);

 bill.setRating(rating);

 BillEntity billcopy;

 if ((billcopy = em.find(BillEntity.class, bill.getMeterUID())) != null) {

 billcopy.setUnitsUsage(units);

 bill.setResourceUID(resourceUID);

 bill.setClassUID(classUID);

 billcopy.setCharge(price);

 billcopy.setRating(rating);

 em.merge(billcopy);

 //em.flush();

 //em.clear();

 } else {

 System.out.println("persisting bill : " + bill.toString());

 persist(bill);

 //em.flush();

 //em.clear();

 }

 }

 public float giveDiscount(float price_per_unit, int rating, String customerUID) {

Appendix A : Simulator Source Code

 95

 int minusValue=0;

 if (rating > 5) {

 price_per_unit *= 0.95;

 minusValue=5;

 }

 if (rating > 10) {

 price_per_unit *= 0.9;

 minusValue=10;

 }

 if (rating > 50) {

 price_per_unit *= 0.8;

 minusValue=50;

 }

 EntityEntity $entity=(EntityEntity)em.find(EntityEntity.class, customerUID);

 $entity.setRating($entity.getRating()-minusValue);

 return price_per_unit;

 }

 public int updateRating(String resourceUID, String consumerUID) {

 ClassEntity classEntity = (ClassEntity) em.createQuery("SELECT r.classUID

FROM ResourceEntity As r WHERE r.resourceUID='" + resourceUID +

"'").getSingleResult();

 int rating = (Integer) em.createQuery("SELECT e.rating FROM EntityEntity AS

e WHERE e.entityUID='" + consumerUID + "'").getSingleResult();

 if (classEntity.getClassUID().equalsIgnoreCase("Guaranteed")) {

 rating += 2;

 } else if (classEntity.getClassUID().equalsIgnoreCase("ControlLoad")) {

 rating += 1;

 }

 return rating;

 }

 public void persist(Object object) {

 em.persist(object);

 }

 // Add business logic below. (Right-click in editor and choose

 // "EJB Methods > Add Business Method" or "Web Service > Add Operation")

}

Listing 3: Charging Agent and User Rating Agent Source Code

Appendix A : Simulator Source Code

 96

package sys_arch;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.ejb.Stateless;

import javax.management.Query;

import javax.persistence.EntityManager;

import javax.persistence.FlushModeType;

import javax.persistence.PersistenceContext;

/**

 *

 * @author Joseph Okharedia II

 */

@WebService()

@Stateless()

public class PriceRegulator {

 @PersistenceContext

 private EntityManager em;

 /**

 * Web service operation

 */

 @WebMethod(operationName = "recommendPrice")

 public float recommendPrice(@WebParam(name = "Period") int Period,

@WebParam(name = "ResourceUID") String ResourceUID, @WebParam(name =

"MeterUID") String MeterUID, @WebParam(name = "Units") int Units) {

 //TODO write your implementation code here:

 //em.setFlushMode(FlushModeType.AUTO);

 String $QoSClass;

 float $ResourcePrice, $CeilingPrice, $FloorPrice, $MaxCostPrice,

$MinCostPrice;

 int $Demand, $Supply;

 System.out.println("PricingRecommendation begins...");

 $QoSClass = ((ClassEntity) em.createQuery("SELECT r.classUID FROM

ResourceEntity AS r WHERE r.resourceUID ='" + ResourceUID +

"'").getSingleResult()).getClassUID();

 $ResourcePrice = (Float) em.createQuery("SELECT r.resourcePrice FROM

ResourceEntity AS r WHERE r.resourceUID ='" + ResourceUID +

"'").getSingleResult();

 $MaxCostPrice = (Float) em.createQuery("SELECT MAX(r.resourcePrice)

FROM ResourceEntity AS r JOIN r.classUID c WHERE c.classUID ='" +

$QoSClass + "'").getSingleResult();

 $MinCostPrice = (Float) em.createQuery("SELECT MIN(r.resourcePrice)

Appendix A : Simulator Source Code

 97

FROM ResourceEntity AS r JOIN r.classUID c WHERE c.classUID ='" + $QoSClass

+ "'").getSingleResult();

 Object o = ((java.util.Vector) em.createNativeQuery("SELECT SUM(Units)

FROM resource WHERE ClassUID='" + $QoSClass + "'").getSingleResult()).get(0);

 System.out.println("Supply received is : " + o.toString());

 $Supply = Integer.parseInt(o.toString());

 System.out.println("Resource Price : " + $ResourcePrice);

 $CeilingPrice = (Float) em.createQuery("SELECT c.ceilingPrice FROM

ClassEntity AS c WHERE c.classUID ='" + $QoSClass + "'").getSingleResult();

 $FloorPrice = (Float) em.createQuery("SELECT c.floorPrice FROM ClassEntity

AS c WHERE c.classUID ='" + $QoSClass + "'").getSingleResult();

 SupplyDemandEntityPK pk = new SupplyDemandEntityPK(Period,

ResourceUID);

 SupplyDemandEntity $SupplyDemandEntity = new SupplyDemandEntity(pk);

 $SupplyDemandEntity = findExisting($SupplyDemandEntity);

 $SupplyDemandEntity.setDemand(getResourceDemand($SupplyDemandEntity,

Units));

 $SupplyDemandEntity.setCostPrice($ResourcePrice);

 //$SupplyDemandEntity.setRecommendedPrice($ResourcePrice);

 $SupplyDemandEntity.setCeilingPrice($CeilingPrice);

 $SupplyDemandEntity.setFloorPrice($FloorPrice);

 $SupplyDemandEntity.setQoSClass($QoSClass);

 $SupplyDemandEntity.setMeterUID(MeterUID);

 $SupplyDemandEntity.setSupply($Supply);

 //$SupplyDemandEntity = updateDemand($SupplyDemandEntity);

 $SupplyDemandEntity = recommendPrice($SupplyDemandEntity, Units);

 return regulatePrice($SupplyDemandEntity, $MaxCostPrice, $MinCostPrice);

 }

 private int getResourceDemand(SupplyDemandEntity sndEntity, int units) {

 SupplyDemandEntity $copy = em.find(SupplyDemandEntity.class,

sndEntity.getSupplyDemandEntityPK());

 if ($copy != null) {

 int $demand = $copy.getDemand();

 $demand += units;

 $copy.setDemand($demand);

 em.merge($copy);

 return $demand;

 } else {

 return units;

 }

 }

 private SupplyDemandEntity findExisting(SupplyDemandEntity sndEntity) {

 System.out.println("ResourceUID : " +

sndEntity.getSupplyDemandEntityPK().getResourceUID());

 System.out.println("Period : " +

Appendix A : Simulator Source Code

 98

sndEntity.getSupplyDemandEntityPK().getPeriod());

 SupplyDemandEntity $XsistinSndEntity = (SupplyDemandEntity)

em.find(SupplyDemandEntity.class, sndEntity.getSupplyDemandEntityPK());

 if ($XsistinSndEntity == null) {

 $XsistinSndEntity = sndEntity;

 } else {

 System.out.println("Existing Entity:" + $XsistinSndEntity.getMeterUID());

 }

 return $XsistinSndEntity;

 }

// private SupplyDemandEntity updateDemand(SupplyDemandEntity sndEntity) {

// int $demand = sndEntity.getDemand();

// sndEntity.setDemand(++$demand);

// System.out.println("Demand updated");

// return sndEntity;

// }

 private int MarketDemand(SupplyDemandEntity sndEntity, int units) {

 int $demand = 0;

 String $QoSClass = sndEntity.getQoSClass();

 System.out.println("got qosClass : " + $QoSClass);

 SupplyDemandEntityPK $sndEntityPK =

sndEntity.getSupplyDemandEntityPK();

 if ($sndEntityPK == null) {

 System.out.println("new market");

 return units;

 }

 int $period = $sndEntityPK.getPeriod();

 System.out.println("Period is : " + $period);

 //$demand=(Integer)em.createQuery("SELECT SUM(s.demand) FROM

SupplyDemandEntity AS s WHERE s.qoSClass='"+$QoSClass+"' AND

s.supplyDemandEntityPK.period="+$period).getSingleResult();

 //System.out.println("Demand : "+$demand);

 Object o = ((java.util.Vector) em.createNativeQuery("SELECT SUM(demand)

FROM supplydemand WHERE QoSClass='" + $QoSClass + "' AND Period=" +

$period).getSingleResult()).get(0);

 if (o == null) {

 return units;

 }

 System.out.println("Supply received is : " + o.toString());

 $demand = Integer.parseInt(o.toString());

 return $demand;

 }

 private SupplyDemandEntity recommendPrice(SupplyDemandEntity sndEntity, int

units) {

 float $MarketSupply = sndEntity.getSupply();

 float $MarketDemand = MarketDemand(sndEntity, units);

 float $RecommendedPrice = sndEntity.getCostPrice();

Appendix A : Simulator Source Code

 99

 sndEntity.setDemand(((Float)$MarketDemand).intValue());

 System.out.println("start of recommededPrice.................\n\n\n");

 System.out.println("Meter is "+sndEntity.getMeterUID());

 float rateOfChange = ($MarketDemand / $MarketSupply);

 System.out.println("Float Rate of Change : " + rateOfChange);

 if ($MarketDemand == $MarketSupply) {

 sndEntity.setRecommendedPrice($RecommendedPrice);

 return sndEntity;

 }

 if ($MarketDemand > $MarketSupply) {

 System.out.println("MarketDemand > MarketSupply");

 $RecommendedPrice = $RecommendedPrice + ($RecommendedPrice *

rateOfChange);

 System.out.println("Market Demand : " + $MarketDemand);

 System.out.println("Market Supply : " + $MarketSupply);

 System.out.println("Recommended Price : " + $RecommendedPrice);

 System.out.println("\n");

 }

 if ($MarketDemand < $MarketSupply) {

 System.out.println("MarketDemand < MarketSupply");

 $RecommendedPrice = $RecommendedPrice - ($RecommendedPrice * (1 -

rateOfChange));

 System.out.println("Market Demand : " + $MarketDemand);

 System.out.println("Market Supply : " + $MarketSupply);

 System.out.println("Recommended Price : " + $RecommendedPrice);

 System.out.println("\n");

 }

 sndEntity.setRecommendedPrice($RecommendedPrice);

 System.out.println("end of recommededPrice.................\n\n\n");

 return sndEntity;

 }

 private float regulatePrice(SupplyDemandEntity sndEntity, float maxCostPrice,

float minCostPrice) {

 float recommendedPrice = sndEntity.getRecommendedPrice();

 float floorPrice = sndEntity.getFloorPrice();

 float ceilingPrice = sndEntity.getCeilingPrice();

 float regulatedPrice = recommendedPrice;

 if (recommendedPrice < floorPrice) {

 float $maxDiffPrice = Math.max((floorPrice - recommendedPrice),

(minCostPrice - recommendedPrice));

 regulatedPrice = recommendedPrice + $maxDiffPrice;

 } else if (recommendedPrice > ceilingPrice) {

 float $maxDiffPrice = Math.max((recommendedPrice - ceilingPrice),

(recommendedPrice - maxCostPrice));

 regulatedPrice = recommendedPrice - $maxDiffPrice;

Appendix A : Simulator Source Code

 100

 }

 sndEntity.setRegulatedPrice(regulatedPrice);

 System.out.println("ResourceUID : " +

sndEntity.getSupplyDemandEntityPK().getResourceUID());

 System.out.println("Demand : " + sndEntity.getDemand());

 System.out.println("Ceiling Price : " + sndEntity.getCeilingPrice());

 System.out.println("Floor Price : " + sndEntity.getFloorPrice());

 System.out.println("MeterUID : " + sndEntity.getMeterUID());

 System.out.println("Period : " +

sndEntity.getSupplyDemandEntityPK().getPeriod());

 System.out.println("QOS Class : " + sndEntity.getQoSClass());

 System.out.println("Cost Price : " + sndEntity.getCostPrice());

 System.out.println("Recommended Price : " +

sndEntity.getRecommendedPrice());

 System.out.println("Regulated Price : " + sndEntity.getRegulatedPrice());

 System.out.println("Supply : " + sndEntity.getSupply());

 System.out.println("Max Cost Price : " + maxCostPrice);

 System.out.println("Min Cost Price : " + minCostPrice);

 if (em.find(SupplyDemandEntity.class, sndEntity.getSupplyDemandEntityPK())

== null) {

 em.persist(sndEntity);

 //em.flush();

 //em.refresh(sndEntity);

 System.out.println("persisting from pricing");

 } else {

 em.merge(sndEntity);

 //em.flush();

 //em.refresh(sndEntity);

 System.out.println("merging from pricing");

 }

 //em.flush();

 //em.clear();

 //em.close();

 System.out.println("Pricing Recommendation ends\n\n\n");

 return regulatedPrice;

 }

}

Listing 4: Price Regulator and Price Recommender Source code

